Extended Pascal's triangle

被引:0
|
作者
Atanassov, Krassimir T. [1 ]
机构
[1] Bulgarian Acad Sci, Dept Bioinformat & Math Modelling, Inst Biophys & Biomed Engn, Acad G Bonchev Str,Bl 105, BU-1113 Sofia, Bulgaria
关键词
Binomial coefficients; Pascal's triangle;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An extension of the best known Pascal's triangle is introduced and an explicit formula for its members is given.
引用
收藏
页码:55 / 58
页数:4
相关论文
共 50 条
  • [1] THE BINOMIAL THEOREM AND THE EXTENDED PASCAL TRIANGLE
    FJELSTAD, P
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1991, 21 (09) : 11 - 17
  • [2] The backbone of Pascal's triangle
    Baylis, John
    [J]. MATHEMATICAL GAZETTE, 2010, 94 (529): : 184 - 185
  • [3] Pascal's Triangle of Configurations
    Gevay, Gabor
    [J]. DISCRETE GEOMETRY AND SYMMETRY: DEDICATED TO KAROLY BEZDEK AND EGON SCHULTE ON THE OCCASION OF THEIR 60TH BIRTHDAYS, 2018, 234 : 181 - 199
  • [4] Pascal's triangle (mod 9)
    Huard, JG
    Spearman, BK
    Williams, KS
    [J]. ACTA ARITHMETICA, 1997, 78 (04) : 331 - 349
  • [5] Pascal's triangle (mod 8)
    Huard, JG
    Spearman, BK
    Williams, KS
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 1998, 19 (01) : 45 - 62
  • [6] Surds from Pascal's triangle
    Stephenson, Paul
    [J]. MATHEMATICAL GAZETTE, 2020, 104 (561): : 552 - 553
  • [7] On a Surface Associated with Pascal's Triangle
    Beiu, Valeriu
    Daus, Leonard
    Jianu, Marilena
    Mihai, Adela
    Mihai, Ion
    [J]. SYMMETRY-BASEL, 2022, 14 (02):
  • [8] FINITE SUMS IN PASCAL'S TRIANGLE
    Sofo, A.
    [J]. FIBONACCI QUARTERLY, 2012, 50 (04): : 337 - 345
  • [9] On unimodality problems in Pascal's triangle
    Su, Xun-Tuan
    Wang, Yi
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2008, 15 (01):
  • [10] Irrational dilations of Pascal's triangle
    Berend, D
    Boshernitzan, MD
    Kolesnik, G
    [J]. MATHEMATIKA, 2001, 48 (95-96) : 159 - 168