Pascal's triangle (mod 8)

被引:12
|
作者
Huard, JG
Spearman, BK
Williams, KS
机构
[1] Canisius Coll, Dept Math, Buffalo, NY 14208 USA
[2] Okanagan Univ Coll, Dept Math & Stat, Kelowna, BC V1V 1V7, Canada
[3] Carleton Univ, Dept Math & Stat, Ottawa, ON K1S 5B6, Canada
关键词
D O I
10.1006/eujc.1997.0146
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Lucas' theorem gives a congruence for a binomial coefficient modulo a prime. Davis and Webb (Europ. J. Combinatorics, 11 (1990), 229-233) extended Lucas' theorem to a prime power modulus. Making use of their result, we count the number of times each residue class occurs in the nth row of Pascal's triangle (mod 8). Our results correct and extend those of Granville (Amer. Math. Monthly, 99 (1992), 318-331). (C) 1998 Academic Press Limited.
引用
收藏
页码:45 / 62
页数:18
相关论文
共 50 条
  • [1] Pascal's triangle (mod 9)
    Huard, JG
    Spearman, BK
    Williams, KS
    [J]. ACTA ARITHMETICA, 1997, 78 (04) : 331 - 349
  • [2] THE BOX-COUNTING DIMENSION OF PASCAL'S TRIANGLE r mod p
    Bradley, David M.
    Khalil, Andre
    Niemeyer, Robert G.
    Ossanna, Elliot
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2018, 26 (05)
  • [3] The backbone of Pascal's triangle
    Baylis, John
    [J]. MATHEMATICAL GAZETTE, 2010, 94 (529): : 184 - 185
  • [4] Pascal's Triangle of Configurations
    Gevay, Gabor
    [J]. DISCRETE GEOMETRY AND SYMMETRY: DEDICATED TO KAROLY BEZDEK AND EGON SCHULTE ON THE OCCASION OF THEIR 60TH BIRTHDAYS, 2018, 234 : 181 - 199
  • [5] Extended Pascal's triangle
    Atanassov, Krassimir T.
    [J]. NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2016, 22 (01) : 55 - 58
  • [6] Surds from Pascal's triangle
    Stephenson, Paul
    [J]. MATHEMATICAL GAZETTE, 2020, 104 (561): : 552 - 553
  • [7] On a Surface Associated with Pascal's Triangle
    Beiu, Valeriu
    Daus, Leonard
    Jianu, Marilena
    Mihai, Adela
    Mihai, Ion
    [J]. SYMMETRY-BASEL, 2022, 14 (02):
  • [8] FINITE SUMS IN PASCAL'S TRIANGLE
    Sofo, A.
    [J]. FIBONACCI QUARTERLY, 2012, 50 (04): : 337 - 345
  • [9] On unimodality problems in Pascal's triangle
    Su, Xun-Tuan
    Wang, Yi
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2008, 15 (01):
  • [10] Irrational dilations of Pascal's triangle
    Berend, D
    Boshernitzan, MD
    Kolesnik, G
    [J]. MATHEMATIKA, 2001, 48 (95-96) : 159 - 168