The backbone of Pascal's triangle

被引:0
|
作者
Baylis, John [1 ]
机构
[1] Nant Y Cwm, Ysgol Steiner, Clunderwen SA66 7QL, Pembrokeshire, Wales
来源
MATHEMATICAL GAZETTE | 2010年 / 94卷 / 529期
关键词
D O I
10.1017/S0025557200007476
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:184 / 185
页数:3
相关论文
共 50 条
  • [1] Pascal's Triangle of Configurations
    Gevay, Gabor
    [J]. DISCRETE GEOMETRY AND SYMMETRY: DEDICATED TO KAROLY BEZDEK AND EGON SCHULTE ON THE OCCASION OF THEIR 60TH BIRTHDAYS, 2018, 234 : 181 - 199
  • [2] Extended Pascal's triangle
    Atanassov, Krassimir T.
    [J]. NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2016, 22 (01) : 55 - 58
  • [3] Pascal's triangle (mod 9)
    Huard, JG
    Spearman, BK
    Williams, KS
    [J]. ACTA ARITHMETICA, 1997, 78 (04) : 331 - 349
  • [4] Pascal's triangle (mod 8)
    Huard, JG
    Spearman, BK
    Williams, KS
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 1998, 19 (01) : 45 - 62
  • [5] Surds from Pascal's triangle
    Stephenson, Paul
    [J]. MATHEMATICAL GAZETTE, 2020, 104 (561): : 552 - 553
  • [6] On a Surface Associated with Pascal's Triangle
    Beiu, Valeriu
    Daus, Leonard
    Jianu, Marilena
    Mihai, Adela
    Mihai, Ion
    [J]. SYMMETRY-BASEL, 2022, 14 (02):
  • [7] FINITE SUMS IN PASCAL'S TRIANGLE
    Sofo, A.
    [J]. FIBONACCI QUARTERLY, 2012, 50 (04): : 337 - 345
  • [8] On unimodality problems in Pascal's triangle
    Su, Xun-Tuan
    Wang, Yi
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2008, 15 (01):
  • [9] Irrational dilations of Pascal's triangle
    Berend, D
    Boshernitzan, MD
    Kolesnik, G
    [J]. MATHEMATIKA, 2001, 48 (95-96) : 159 - 168
  • [10] Pascal's triangle and constructible polygons
    Luca, F
    [J]. UTILITAS MATHEMATICA, 2000, 58 : 209 - 214