On unimodality problems in Pascal's triangle

被引:0
|
作者
Su, Xun-Tuan [1 ]
Wang, Yi [1 ]
机构
[1] Dalian Univ Technol, Dept Appl Math, Dalian 116024, Peoples R China
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2008年 / 15卷 / 01期
基金
美国国家科学基金会;
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Many sequences of binomial coefficients share various unimodality properties. In this paper we consider the unimodality problem of a sequence of binomial coefficients located in a ray or a transversal of the Pascal triangle. Our results give in particular an affirmative answer to a conjecture of Belbachir et al which asserts that such a sequence of binomial coefficients must be unimodal. We also propose two more general conjectures.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] The backbone of Pascal's triangle
    Baylis, John
    [J]. MATHEMATICAL GAZETTE, 2010, 94 (529): : 184 - 185
  • [2] Pascal's Triangle of Configurations
    Gevay, Gabor
    [J]. DISCRETE GEOMETRY AND SYMMETRY: DEDICATED TO KAROLY BEZDEK AND EGON SCHULTE ON THE OCCASION OF THEIR 60TH BIRTHDAYS, 2018, 234 : 181 - 199
  • [3] Extended Pascal's triangle
    Atanassov, Krassimir T.
    [J]. NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2016, 22 (01) : 55 - 58
  • [4] Efficiency of understanding some mathematical problems by means of Pascal's triangle
    Aliu, Arta
    Rexhepi, Shpetim
    Iseni, Egzona
    [J]. INTERNATIONAL ELECTRONIC JOURNAL OF MATHEMATICS EDUCATION, 2023, 18 (04)
  • [5] Numerical problems with the Pascal triangle in moment computation
    Kautsky, Jaroslav
    Flusser, Jan
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 306 : 53 - 68
  • [6] Pascal's triangle (mod 9)
    Huard, JG
    Spearman, BK
    Williams, KS
    [J]. ACTA ARITHMETICA, 1997, 78 (04) : 331 - 349
  • [7] Pascal's triangle (mod 8)
    Huard, JG
    Spearman, BK
    Williams, KS
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 1998, 19 (01) : 45 - 62
  • [8] Surds from Pascal's triangle
    Stephenson, Paul
    [J]. MATHEMATICAL GAZETTE, 2020, 104 (561): : 552 - 553
  • [9] On a Surface Associated with Pascal's Triangle
    Beiu, Valeriu
    Daus, Leonard
    Jianu, Marilena
    Mihai, Adela
    Mihai, Ion
    [J]. SYMMETRY-BASEL, 2022, 14 (02):
  • [10] FINITE SUMS IN PASCAL'S TRIANGLE
    Sofo, A.
    [J]. FIBONACCI QUARTERLY, 2012, 50 (04): : 337 - 345