THE BINOMIAL THEOREM AND THE EXTENDED PASCAL TRIANGLE

被引:0
|
作者
FJELSTAD, P
机构
[1] Northfield, MN 55057
关键词
D O I
10.1016/0898-1221(91)90121-J
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
With the binomial coefficients (n(k)) being defined for all integers n, k, several forms of the binomial theorem, valid for all n, are provided. This is set up using algebraic means on infinitely long rows of numbers. When diverging series result, they are evaluated modulo an infinite number. This modular arithmetic, related to p-adic arithmetic, thus provides a new way to interpret diverging series.
引用
收藏
页码:11 / 17
页数:7
相关论文
共 50 条
  • [1] Generalized Pascal triangle for binomial coefficients of words
    Leroy, Julien
    Rigo, Michel
    Stipulanti, Manon
    [J]. ADVANCES IN APPLIED MATHEMATICS, 2016, 80 : 24 - 47
  • [2] Extended Pascal's triangle
    Atanassov, Krassimir T.
    [J]. NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2016, 22 (01) : 55 - 58
  • [3] LUCAS' THEOREM FOR EXTENDED GENERALIZED BINOMIAL COEFFICIENTS
    Ollerton, R. L.
    Shannon, A. G.
    [J]. NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2006, 12 (02) : 8 - 12
  • [4] PROPERTIES OF PASCAL DISTRIBUTION WITHOUT RECOURSE TO BINOMIAL THEOREM WITH NEGATIVE EXPONENT
    HERBACH, LH
    [J]. AMERICAN STATISTICIAN, 1972, 26 (04): : 39 - 41
  • [5] A new configurable decimation filter using Pascal's triangle theorem
    Cherik Chahardah, A.
    Farshidi, E.
    [J]. World Academy of Science, Engineering and Technology, 2011, 78 : 75 - 78
  • [6] Generating binomial coefficients in a row of Pascal's triangle from extensions of powers of eleven
    Islam, Md. Shariful
    Islam, Md. Robiul
    Hossan, Md. Shorif
    Kibria, Md. Hasan
    [J]. HELIYON, 2022, 8 (11)
  • [7] Linear recurrence sequence associated to rays of negatively extended Pascal triangle
    Belbachir, Hacene
    Bouyakoub, Abdelkader
    Krim, Fariza
    [J]. NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2022, 28 (01) : 129 - 142
  • [8] LUCAS THEOREM AND SOME RELATED RESULTS FOR EXTENDED PASCAL TRIANGLES
    BOLLINGER, RC
    BURCHARD, CL
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1990, 97 (03): : 198 - 204
  • [9] EXTENDING PASCAL TRIANGLE
    FJELSTAD, P
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1991, 21 (09) : 1 - 4
  • [10] PASCAL TRIANGLE MODULO
    LONG, CT
    [J]. FIBONACCI QUARTERLY, 1981, 19 (05): : 458 - 463