EXTENDING PASCAL TRIANGLE

被引:1
|
作者
FJELSTAD, P
机构
[1] Northfield, MN 55057
关键词
D O I
10.1016/0898-1221(91)90119-O
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An alternative is given to Hilton and Pedersen's method of defining binomial coefficients (r(n)) for any integers n, r. It involves using the usual factorial formula for (r(n)) via the defining of the factorial ratio n!/r! for any integers n, r. In the process, defining 0/0 = 1 turns out to have several useful applications. An attempt to extend the binomial theorem to negative exponents suggests viewing the extended Pascal's triangle as binomial coefficients modulo an infinite number.
引用
收藏
页码:1 / 4
页数:4
相关论文
共 50 条
  • [1] PASCAL TRIANGLE MODULO
    LONG, CT
    FIBONACCI QUARTERLY, 1981, 19 (05): : 458 - 463
  • [2] Extending the Pascal Mysticum
    Conway, John
    Ryba, Alex
    MATHEMATICAL INTELLIGENCER, 2013, 35 (02): : 44 - 51
  • [3] EXTENDING TURBO PASCAL
    WEBSTER, B
    BYTE, 1985, 10 (12): : 123 - &
  • [4] Extending the Pascal Mysticum
    John Conway
    Alex Ryba
    The Mathematical Intelligencer, 2013, 35 : 44 - 51
  • [5] The backbone of Pascal's triangle
    Baylis, John
    MATHEMATICAL GAZETTE, 2010, 94 (529): : 184 - 185
  • [6] THE PASCAL TRIANGLE MODULO A PRIME
    MAULDON, JG
    MAYS, M
    AMERICAN MATHEMATICAL MONTHLY, 1980, 87 (07): : 578 - 580
  • [7] Pascal's Triangle of Configurations
    Gevay, Gabor
    DISCRETE GEOMETRY AND SYMMETRY: DEDICATED TO KAROLY BEZDEK AND EGON SCHULTE ON THE OCCASION OF THEIR 60TH BIRTHDAYS, 2018, 234 : 181 - 199
  • [8] PASCAL TRIANGLE AND THE TOWER OF HANOI
    HINZ, AM
    AMERICAN MATHEMATICAL MONTHLY, 1992, 99 (06): : 538 - 544
  • [9] ON THE PASCAL-TYPE TRIANGLE
    ZHOU ChizhongDepartment of Computer and Information Engineering Yueyang Normal UniversityHunan China
    岳阳师范学院学报(自然科学版), 2001, (04) : 1 - 4
  • [10] Extended Pascal's triangle
    Atanassov, Krassimir T.
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2016, 22 (01) : 55 - 58