EXTENDING PASCAL TRIANGLE

被引:1
|
作者
FJELSTAD, P
机构
[1] Northfield, MN 55057
关键词
D O I
10.1016/0898-1221(91)90119-O
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An alternative is given to Hilton and Pedersen's method of defining binomial coefficients (r(n)) for any integers n, r. It involves using the usual factorial formula for (r(n)) via the defining of the factorial ratio n!/r! for any integers n, r. In the process, defining 0/0 = 1 turns out to have several useful applications. An attempt to extend the binomial theorem to negative exponents suggests viewing the extended Pascal's triangle as binomial coefficients modulo an infinite number.
引用
收藏
页码:1 / 4
页数:4
相关论文
共 50 条