Unimodal rays of the generalized Pascal's triangle

被引:0
|
作者
Su, Xun-Tuan [1 ]
Zhang, Wei-Wei [1 ]
机构
[1] E China Inst Technol, Sch Math & Informat, Nanchang 330013, Peoples R China
关键词
Unimodality; Log-concavity; Rays; Generalized Pascal's triangle;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we present two criteria for a sequence lying along a ray of a combinatorial triangle to be unimodal, and give a correct proof for the result of Belbachir and Szalay on unimodal rays of the generalized Pascal's triangle.
引用
下载
收藏
页码:289 / 296
页数:8
相关论文
共 50 条
  • [1] Unimodal Rays in the Ordinary and Generalized Pascal Triangles
    Belbachir, Hacena
    Szalay, Laszlo
    JOURNAL OF INTEGER SEQUENCES, 2008, 11 (02)
  • [2] Unimodal rays in the regular and generalized Pascal pyramids
    Belbachir, Hacene
    Szalay, Laszlo
    ELECTRONIC JOURNAL OF COMBINATORICS, 2011, 18 (01):
  • [3] Characterization of linear recurrences associated to rays in Pascal's triangle
    Belbachir, Hacene
    Komatsu, Takao
    Szalay, Laszlo
    DIOPHANTINE ANALYSIS AND RELATED FIELDS 2010, 2010, 1264 : 90 - +
  • [4] Linear recurrences associated to rays in Pascal's triangle and combinatorial identities
    Belbachir, Hacene
    Komatsu, Takao
    Szalay, Laszlo
    MATHEMATICA SLOVACA, 2014, 64 (02) : 287 - 300
  • [5] Generalized Pascal triangle for binomial coefficients of words
    Leroy, Julien
    Rigo, Michel
    Stipulanti, Manon
    ADVANCES IN APPLIED MATHEMATICS, 2016, 80 : 24 - 47
  • [6] The backbone of Pascal's triangle
    Baylis, John
    MATHEMATICAL GAZETTE, 2010, 94 (529): : 184 - 185
  • [7] Pascal's Triangle of Configurations
    Gevay, Gabor
    DISCRETE GEOMETRY AND SYMMETRY: DEDICATED TO KAROLY BEZDEK AND EGON SCHULTE ON THE OCCASION OF THEIR 60TH BIRTHDAYS, 2018, 234 : 181 - 199
  • [8] Extended Pascal's triangle
    Atanassov, Krassimir T.
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2016, 22 (01) : 55 - 58
  • [9] Generating ideals in commutative Artinian group rings and a generalized Pascal's triangle
    Okon, JS
    Rush, DE
    COMMUNICATIONS IN ALGEBRA, 2002, 30 (11) : 5595 - 5607
  • [10] FORMULAS FOR SERIES OBTAINED FROM GENERALIZED PASCAL TRIANGLE
    ROGERS, HP
    AMERICAN MATHEMATICAL MONTHLY, 1965, 72 (04): : 455 - &