Characterization of linear recurrences associated to rays in Pascal's triangle

被引:7
|
作者
Belbachir, Hacene [1 ]
Komatsu, Takao [2 ]
Szalay, Laszlo [3 ]
机构
[1] USTHB, Fac Math, Po Box 32, Algiers 16111, Algeria
[2] Hirosaki Univ, Dept Math Sci, Hirosaki, Aomori 0368561, Japan
[3] Univ W Hungary, Inst Math & Stat, H-9400 Sopron, Hungary
来源
DIOPHANTINE ANALYSIS AND RELATED FIELDS 2010 | 2010年 / 1264卷
基金
日本学术振兴会;
关键词
Linear recurrence sequences; Fibonacci numbers and polynomials; Pascal triangle; Morgon-Voyce sequence; continued fractions; combinatorial sums; CHEBYSHEV;
D O I
10.1063/1.3478184
中图分类号
O59 [应用物理学];
学科分类号
摘要
Our purpose is to describe the recurrence relations associated to the sum of diagonal elements laying along a finite ray crossing Pascal's triangle. We also answer Horadam's question posed in his paper entitled Chebyshev and Pell connections, Fibonacci Quart., (2005). Further, using Morgan-Voyce sequence, we establish the nice identity Fn+1 - iF(n) = i(n) Sigma(n)(k=0) ((n+k)2k) (-2 -i)(k) of Fibonacci numbers, where i = root-1. Finally, connections to continued fractions, bivariate polynomials and finite differences are given.
引用
收藏
页码:90 / +
页数:2
相关论文
共 50 条
  • [1] Linear recurrences associated to rays in Pascal's triangle and combinatorial identities
    Belbachir, Hacene
    Komatsu, Takao
    Szalay, Laszlo
    MATHEMATICA SLOVACA, 2014, 64 (02) : 287 - 300
  • [2] Unimodality and linear recurrences associated with rays in the Delannoy triangle
    Amrouche, Said
    Belbachir, Hacene
    TURKISH JOURNAL OF MATHEMATICS, 2020, 44 (01) : 118 - 130
  • [3] Linear recurrence sequence associated to rays of negatively extended Pascal triangle
    Belbachir, Hacene
    Bouyakoub, Abdelkader
    Krim, Fariza
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2022, 28 (01) : 129 - 142
  • [4] Unimodal rays of the generalized Pascal's triangle
    Su, Xun-Tuan
    Zhang, Wei-Wei
    ARS COMBINATORIA, 2013, 108 : 289 - 296
  • [5] RECURRENCE SEQUENCES ASSOCIATED TO RAYS IN BI-PERIODIC PASCAL'S TRIANGLE
    Belaggoun, N.
    Belbachir, H.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2024, 93 (03): : 137 - 156
  • [6] On a Surface Associated with Pascal's Triangle
    Beiu, Valeriu
    Daus, Leonard
    Jianu, Marilena
    Mihai, Adela
    Mihai, Ion
    SYMMETRY-BASEL, 2022, 14 (02):
  • [7] Members of binary recurrences on lines of the Pascal triangle
    Luca, F
    Pappalardi, F
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2005, 67 (1-2): : 103 - 113
  • [8] On digital sequences associated with Pascal’s triangle
    Pierre Mathonet
    Michel Rigo
    Manon Stipulanti
    Naïm Zénaïdi
    Aequationes mathematicae, 2023, 97 : 391 - 423
  • [9] On a combinatorial identity associated with Pascal's triangle
    Svitekova, Monika
    Szalay, Laszlo
    ANNALES MATHEMATICAE ET INFORMATICAE, 2024, 60 : 133 - 140
  • [10] On digital sequences associated with Pascal's triangle
    Mathonet, Pierre
    Rigo, Michel
    Stipulanti, Manon
    Zenaidi, Naim
    AEQUATIONES MATHEMATICAE, 2023, 97 (02) : 391 - 423