THE NUMBER OF PATHS IN BOUNDARY RESTRICTED PASCAL TRIANGLE

被引:0
|
作者
Kobayashi, Kingo [1 ]
Sato, Hajime [2 ]
Hoshi, Mamoru [1 ]
机构
[1] Univ Electrocommun, Tokyo, Japan
[2] Senshu Univ, Tokyo, Japan
关键词
random walk; symbolic method; Pascal triangle; Dyck path; Fibonacci polynomial; Chebyshev polynomial of the second kind;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this talk, we provide several forms of the generator for counting the number of paths in the boundary restricted Pascal triangle. In the section 1, we consider the problem of single boundary. In the section 2, we proceed the discussion into the problem of two boundaries. Specifically, we give three seemingly different forms to count the number of paths. If time permits, we will give the proof of the equivalence between them. The study treated in the paper is a continuation of papers [2, 3].
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Promenade around Pascal Triangle - Number Motives
    Cobeli, Cristian
    Zaharescu, Alexandru
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2013, 56 (01): : 73 - 98
  • [2] On the distribution of the number of ones in a Boolean Pascal's triangle
    Malyshev, F. M.
    Kutyreva, E. V.
    DISCRETE MATHEMATICS AND APPLICATIONS, 2006, 16 (03): : 271 - 279
  • [3] THE BOUNDARY OF THE EULERIAN NUMBER TRIANGLE
    Gnedin, Alexander
    Olshanski, Grigori
    MOSCOW MATHEMATICAL JOURNAL, 2006, 6 (03) : 460 - 474
  • [4] The number of restricted lattice paths revisited
    Prodinger, Helmut
    FILOMAT, 2012, 26 (06) : 1133 - 1134
  • [5] Pascal's Triangle and Other Number Triangles in Clifford Analysis
    Tomaz, G.
    Falcao, M. I.
    Malonek, H. R.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2012), VOLS A AND B, 2012, 1479 : 313 - 316
  • [6] Boolean analogues of the Pascal triangle with maximal possible number of ones
    Malyshev, Fedor M.
    DISCRETE MATHEMATICS AND APPLICATIONS, 2021, 31 (05): : 319 - 325
  • [7] EXTENDING PASCAL TRIANGLE
    FJELSTAD, P
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1991, 21 (09) : 1 - 4
  • [8] PASCAL TRIANGLE MODULO
    LONG, CT
    FIBONACCI QUARTERLY, 1981, 19 (05): : 458 - 463
  • [9] The backbone of Pascal's triangle
    Baylis, John
    MATHEMATICAL GAZETTE, 2010, 94 (529): : 184 - 185
  • [10] Pascal's Triangle of Configurations
    Gevay, Gabor
    DISCRETE GEOMETRY AND SYMMETRY: DEDICATED TO KAROLY BEZDEK AND EGON SCHULTE ON THE OCCASION OF THEIR 60TH BIRTHDAYS, 2018, 234 : 181 - 199