THE NUMBER OF PATHS IN BOUNDARY RESTRICTED PASCAL TRIANGLE

被引:0
|
作者
Kobayashi, Kingo [1 ]
Sato, Hajime [2 ]
Hoshi, Mamoru [1 ]
机构
[1] Univ Electrocommun, Tokyo, Japan
[2] Senshu Univ, Tokyo, Japan
关键词
random walk; symbolic method; Pascal triangle; Dyck path; Fibonacci polynomial; Chebyshev polynomial of the second kind;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this talk, we provide several forms of the generator for counting the number of paths in the boundary restricted Pascal triangle. In the section 1, we consider the problem of single boundary. In the section 2, we proceed the discussion into the problem of two boundaries. Specifically, we give three seemingly different forms to count the number of paths. If time permits, we will give the proof of the equivalence between them. The study treated in the paper is a continuation of papers [2, 3].
引用
收藏
页数:10
相关论文
共 50 条
  • [31] The number of lattice paths below a cyclically shifting boundary
    Irving, J.
    Rattan, A.
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2009, 116 (03) : 499 - 514
  • [32] Traces of powers of the Pascal triangle matrix
    Akkus, Ilker
    Kizilaslan, Gonca
    FIBONACCI QUARTERLY, 2019, 57 (04): : 374 - 376
  • [33] PASCAL ARITHMETICAL TRIANGLE - EDWARDS,AWF
    GRATTANGUINNESS, I
    ANNALS OF SCIENCE, 1989, 46 (02) : 213 - 213
  • [34] FINITE SUMS IN PASCAL'S TRIANGLE
    Sofo, A.
    FIBONACCI QUARTERLY, 2012, 50 (04): : 337 - 345
  • [35] PASCAL TRIANGLE MODULO-4
    DAVIS, KS
    WEBB, WA
    FIBONACCI QUARTERLY, 1991, 29 (01): : 79 - 83
  • [36] On unimodality problems in Pascal's triangle
    Su, Xun-Tuan
    Wang, Yi
    ELECTRONIC JOURNAL OF COMBINATORICS, 2008, 15 (01):
  • [37] Integrating across Pascal's triangle
    Northshield, Sam
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 374 (02) : 385 - 393
  • [38] Irrational dilations of Pascal's triangle
    Berend, D
    Boshernitzan, MD
    Kolesnik, G
    MATHEMATIKA, 2001, 48 (95-96) : 159 - 168
  • [39] Ramanujan Summation for Pascal's Triangle
    Kumar, A. Dinesh
    Sivaraman, R.
    CONTEMPORARY MATHEMATICS, 2024, 5 (01): : 817 - 825
  • [40] Pascal's triangle and constructible polygons
    Luca, F
    UTILITAS MATHEMATICA, 2000, 58 : 209 - 214