THE INTERSECTION OF A TRIANGULAR BEZIER PATCH AND A PLANE

被引:0
|
作者
CHEN, FL
KOZAK, J
机构
[1] UNIV SCI & TECHNOL CHINA,HEFEI,PEOPLES R CHINA
[2] UNIV LJUBLJANA,DEPT MATH,LJUBLJANA,SLOVENIA
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the problem of finding the intersection of a triangular Bezier patch and a plane is studied. For the degree that one frequently encounters in practice, i.e. n = 2,3, an efficient and reliable algorithm is obtained, and computational steps are presented.
引用
收藏
页码:138 / 146
页数:9
相关论文
共 50 条
  • [1] THE INTERSECTION OF A TRIANGULAR BEZIER PATCHAND A PLANE
    Jernej Kozak
    [J]. Journal of Computational Mathematics, 1994, (02) : 138 - 146
  • [3] A tracing method for parametric Bezier triangular surface/plane intersection
    Sharma, R.
    Sha, O.
    [J]. INTERNATIONAL JOURNAL OF COMPUTER APPLICATIONS IN TECHNOLOGY, 2007, 28 (04) : 240 - 253
  • [4] Ray-triangular Bezier patch intersection using hybrid clipping algorithm
    Liu, Yan-hong
    Cao, Juan
    Chen, Zhong-gui
    Zeng, Xiao-ming
    [J]. FRONTIERS OF INFORMATION TECHNOLOGY & ELECTRONIC ENGINEERING, 2016, 17 (10) : 1018 - 1030
  • [5] A parametric hybrid triangular Bezier patch
    Mann, S
    Davidchuk, M
    [J]. MATHEMATICAL METHODS FOR CURVES AND SURFACES II, 1998, : 335 - 342
  • [6] Conversion of a triangular Bezier patch into three rectangular Bezier patches
    Hu, SM
    [J]. COMPUTER AIDED GEOMETRIC DESIGN, 1996, 13 (03) : 219 - 226
  • [7] Termination criterion for subdivision of triangular Bezier patch
    Li, YQ
    Ke, YL
    Li, WS
    Peng, QS
    Tan, JR
    [J]. COMPUTERS & GRAPHICS-UK, 2002, 26 (01): : 67 - 74
  • [8] A pipelined architecture for ray/Bezier patch intersection computation
    Lewis, RR
    Wang, RW
    Hung, D
    [J]. CANADIAN JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING-REVUE CANADIENNE DE GENIE ELECTRIQUE ET INFORMATIQUE, 2003, 28 (01): : 27 - 35
  • [9] THE GENERATION DISPLAY ALGORITHM AND INTERSECTION ALGORITHMS OF TRIANGULAR BEZIER SURFACES
    TIAN, J
    TAI, JW
    [J]. IFIP TRANSACTIONS B-APPLICATIONS IN TECHNOLOGY, 1992, 1 : 315 - 322
  • [10] Triangular Bezier sub-surfaces on a triangular Bezier surface
    Chen, Wenyu
    Yu, Rongdong
    Zheng, Jianmin
    Cai, Yiyu
    Au, Chikit
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (17) : 5001 - 5016