THE INTERSECTION OF A TRIANGULAR BEZIER PATCHAND A PLANE

被引:0
|
作者
Jernej Kozak
机构
[1] Slovenija
[2] Department of Mathematics University of Ljubljana
关键词
THE INTERSECTION OF A TRIANGULAR BEZIER PATCHAND A PLANE;
D O I
暂无
中图分类号
O182 [解析几何];
学科分类号
0701 ; 070101 ;
摘要
In this paper, the problem of finding the intersection of a triangular Bezier patch and a plane is studied. For the degree that one frequently encounters in practice, i.e. n = 2,3, an efficient and reliable algorithm is obtained, and computational steps are presented.
引用
收藏
页码:138 / 146
页数:9
相关论文
共 50 条
  • [1] THE INTERSECTION OF A TRIANGULAR BEZIER PATCH AND A PLANE
    CHEN, FL
    KOZAK, J
    [J]. JOURNAL OF COMPUTATIONAL MATHEMATICS, 1994, 12 (02) : 138 - 146
  • [3] A tracing method for parametric Bezier triangular surface/plane intersection
    Sharma, R.
    Sha, O.
    [J]. INTERNATIONAL JOURNAL OF COMPUTER APPLICATIONS IN TECHNOLOGY, 2007, 28 (04) : 240 - 253
  • [4] THE GENERATION DISPLAY ALGORITHM AND INTERSECTION ALGORITHMS OF TRIANGULAR BEZIER SURFACES
    TIAN, J
    TAI, JW
    [J]. IFIP TRANSACTIONS B-APPLICATIONS IN TECHNOLOGY, 1992, 1 : 315 - 322
  • [5] Ray-triangular Bezier patch intersection using hybrid clipping algorithm
    Liu, Yan-hong
    Cao, Juan
    Chen, Zhong-gui
    Zeng, Xiao-ming
    [J]. FRONTIERS OF INFORMATION TECHNOLOGY & ELECTRONIC ENGINEERING, 2016, 17 (10) : 1018 - 1030
  • [6] Triangular Bezier sub-surfaces on a triangular Bezier surface
    Chen, Wenyu
    Yu, Rongdong
    Zheng, Jianmin
    Cai, Yiyu
    Au, Chikit
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (17) : 5001 - 5016
  • [7] Approximating rational triangular Bezier surfaces by polynomial triangular Bezier surfaces
    Xu, Hui-Xia
    Wang, Guo-Jin
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 228 (01) : 287 - 295
  • [8] Triangular Bezier clipping
    Roth, SHM
    Diezi, P
    Gross, MH
    [J]. EIGHTH PACIFIC CONFERENCE ON COMPUTER GRAPHICS AND APPLICATIONS, PROCEEDINGS, 2000, : 413 - 414
  • [9] Local Progressive Iterative Approximation for Triangular Bezier and Rational Triangular Bezier Surfaces
    Yan, Liping
    Yu, Desheng
    [J]. PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON MECHATRONICS AND INDUSTRIAL INFORMATICS, 2015, 31 : 456 - 463
  • [10] Constrained approximation of rational triangular Bezier surfaces by polynomial triangular Bezier surfaces
    Lewanowicz, Stanislaw
    Keller, Pawel
    Wozny, Pawel
    [J]. NUMERICAL ALGORITHMS, 2017, 75 (01) : 93 - 111