Triangular Bezier sub-surfaces on a triangular Bezier surface

被引:1
|
作者
Chen, Wenyu [1 ]
Yu, Rongdong [2 ]
Zheng, Jianmin [3 ]
Cai, Yiyu [1 ,3 ,4 ]
Au, Chikit [5 ]
机构
[1] Nanyang Technol Univ, Sch Comp Engn, Singapore, Singapore
[2] Zhejiang Univ, Coll Comp Sci, Hangzhou, Zhejiang, Peoples R China
[3] Nanyang Technol Univ, Inst Media Innovat, Singapore, Singapore
[4] Nanyang Technol Univ, Sch Mech & Aerosp, Singapore, Singapore
[5] Univ Waikato, Dept Engn, Hamilton, New Zealand
关键词
Composition; Sub-patches; Bezier representation; Triangular surfaces; de Casteljau algorithm; Blossoming; BERNSTEIN POLYNOMIALS; TRIANGLES; SUBDIVISION; ALGORITHMS; CONVERSION;
D O I
10.1016/j.cam.2011.04.030
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper considers the problem of computing the Bezier representation for a triangular sub-patch on a triangular Bezier surface. The triangular sub-patch is defined as a composition of the triangular surface and a domain surface that is also a triangular Bezier patch. Based on de Casteljau recursions and shifting operators, previous methods express the control points of the triangular sub-patch as linear combinations of the construction points that are constructed from the control points of the triangular Bezier surface. The construction points contain too many redundancies. This paper derives a simple explicit formula that computes the composite triangular sub-patch in terms of the blossoming points that correspond to distinct construction points and then an efficient algorithm is presented to calculate the control points of the sub-patch. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:5001 / 5016
页数:16
相关论文
共 50 条
  • [1] Approximating rational triangular Bezier surfaces by polynomial triangular Bezier surfaces
    Xu, Hui-Xia
    Wang, Guo-Jin
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 228 (01) : 287 - 295
  • [2] Constrained approximation of rational triangular Bezier surfaces by polynomial triangular Bezier surfaces
    Lewanowicz, Stanislaw
    Keller, Pawel
    Wozny, Pawel
    [J]. NUMERICAL ALGORITHMS, 2017, 75 (01) : 93 - 111
  • [3] Local Progressive Iterative Approximation for Triangular Bezier and Rational Triangular Bezier Surfaces
    Yan, Liping
    Yu, Desheng
    [J]. PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON MECHATRONICS AND INDUSTRIAL INFORMATICS, 2015, 31 : 456 - 463
  • [4] COONS TRIANGULAR BEZIER SURFACES
    Arnal, A.
    Lluch, A.
    [J]. GRAPP 2010: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMPUTER GRAPHICS THEORY AND APPLICATIONS, 2010, : 148 - 153
  • [5] REPARAMETRIZATION OF RATIONAL TRIANGULAR BEZIER SURFACES
    JOE, B
    WANG, WP
    [J]. COMPUTER AIDED GEOMETRIC DESIGN, 1994, 11 (04) : 345 - 361
  • [6] Triangular subpatches of rectangular Bezier surfaces
    Lasser, Dieter
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 55 (08) : 1706 - 1719
  • [7] Extension of compound triangular Bezier surfaces
    Zhao, Dongfu
    Xu, Shuhong
    Ke, Yinglin
    [J]. Jixie Gongcheng Xuebao/Chinese Journal of Mechanical Engineering, 2003, 39 (04): : 87 - 91
  • [8] Triangular Bezier surfaces of minimal area
    Arnal, A
    Lluch, A
    Monterde, J
    [J]. COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCA 2003, PT 3, PROCEEDINGS, 2003, 2669 : 366 - 375
  • [9] Equiareal Parameterization of Triangular Bezier Surfaces
    Chen, Jun
    Kong, Xiang
    Xu, Huixia
    [J]. MATHEMATICS, 2022, 10 (23)
  • [10] Distances with rational triangular Bezier surfaces
    Rababah, A
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2005, 160 (02) : 379 - 386