Conversion of a triangular Bezier patch into three rectangular Bezier patches

被引:16
|
作者
Hu, SM
机构
[1] Department of Applied Mathematics, Zhejiang University, Hangzhou
关键词
rectangular Bezier patches; triangular Bezier patches; parametric transformation;
D O I
10.1016/0167-8396(95)00023-2
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper, we give Bn explicit formula for converting a triangular Bezier patch into three nondegenerate rectangular Bezier patches of the same degree. The use of certain operators simplifies the formulation of such a decomposition. The formula yields a stable recursive algorithm for computing the control points of the rectangular patches. We also illustrate the formula with an example.
引用
收藏
页码:219 / 226
页数:8
相关论文
共 50 条
  • [1] Conversion between triangular Bezier patches and rectangular Bezier patches
    Yan, Lanlan
    Han, Xuli
    Liang, Jiongfeng
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2014, 232 : 469 - 478
  • [2] Representation of the Matrix for Conversion between Triangular Bezier Patches and Rectangular Bezier Patches
    Sabancigil, Pembe
    Kara, Mustafa
    [J]. THIRD INTERNATIONAL CONFERENCE ON COMPUTATIONAL MATHEMATICS AND ENGINEERING SCIENCES (CMES2018), 2018, 22 : 893 - 901
  • [3] Conversion between triangular and rectangular Bezier patches
    Hu, SM
    [J]. COMPUTER AIDED GEOMETRIC DESIGN, 2001, 18 (07) : 667 - 671
  • [4] G1-connection between rectangular bezier patches and multisided Bezier patch
    Liu, CY
    Zhou, XP
    [J]. NINTH INTERNATIONAL CONFERENCE ON COMPUTER AIDED DESIGN AND COMPUTER GRAPHICS, PROCEEDINGS, 2005, : 99 - 104
  • [5] A NOTE ON DEGENERATE TRIANGULAR BEZIER PATCHES
    REIF, U
    [J]. COMPUTER AIDED GEOMETRIC DESIGN, 1995, 12 (05) : 547 - 550
  • [6] NONNEGATIVE QUADRATIC BEZIER TRIANGULAR PATCHES
    CHANG, GZ
    SEDERBERG, TW
    [J]. COMPUTER AIDED GEOMETRIC DESIGN, 1994, 11 (01) : 113 - 116
  • [7] Ray tracing triangular Bezier patches
    Roth, SHM
    Diezi, P
    Gross, MH
    [J]. COMPUTER GRAPHICS FORUM, 2001, 20 (03) : C422 - +
  • [8] Triangular subpatches of rectangular Bezier surfaces
    Lasser, Dieter
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 55 (08) : 1706 - 1719
  • [9] THE INTERSECTION OF A TRIANGULAR BEZIER PATCH AND A PLANE
    CHEN, FL
    KOZAK, J
    [J]. JOURNAL OF COMPUTATIONAL MATHEMATICS, 1994, 12 (02) : 138 - 146
  • [10] A parametric hybrid triangular Bezier patch
    Mann, S
    Davidchuk, M
    [J]. MATHEMATICAL METHODS FOR CURVES AND SURFACES II, 1998, : 335 - 342