GAUSS POLYNOMIALS AND THE ROTATION ALGEBRA

被引:97
|
作者
CHOI, MD
ELLIOTT, GA
YUI, NK
机构
[1] UNIV COPENHAGEN,INST MATH,DK-2100 COPENHAGEN,DENMARK
[2] QUEENS UNIV,KINGSTON K7L 3N6,ONTARIO,CANADA
关键词
D O I
10.1007/BF01234419
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Newton's binomial theorem is extended to an interesting noncommutative setting as follows: If, in a ring, ba=γab with γ commuting with a and b, then the (generalized) binomial coefficient {Mathematical expression} arising in the expansion {Mathematical expression} (resulting from these relations) is equal to the value at γ of the Gaussian polynomial {Mathematical expression} where [m]=(1-xm)(1-xm-1)...(1-x). (This is of course known in the case γ=1.) From this it is deduced that in the (universal)C*-algebra Agq generated by unitaries u and v such that vu=e2πiθuv, the spectrum of the self-adjoint element (u+v)+(u+v)* has all the gaps that have been predicted to exist-provided that either θ is rational, or θ is a Liouville number. (In the latter case, the gaps are labelled in the natural way-via K-theory-by the set of all non-zero integers, and the spectrum is a Cantor set.) © 1996 Springer-Verlag.
引用
收藏
页码:225 / 246
页数:22
相关论文
共 50 条
  • [21] THE ALGEBRA OF CONTINUOUS PIECEWISE POLYNOMIALS
    BILLERA, LJ
    ADVANCES IN MATHEMATICS, 1989, 76 (02) : 170 - 183
  • [22] Special polynomials by matrix algebra
    Beker, H
    AMERICAN JOURNAL OF PHYSICS, 1998, 66 (09) : 812 - 813
  • [23] THE CENTRAL POLYNOMIALS FOR THE GRASSMANN ALGEBRA
    Brandao, Antonio Pereira, Jr.
    Koshlukov, Plamen
    Krasilnikov, Alexei
    da Silva, Elida Alves
    ISRAEL JOURNAL OF MATHEMATICS, 2010, 179 (01) : 127 - 144
  • [24] LLT polynomials in the Schiffmann algebra
    Blasiak, Jonah
    Haiman, Mark
    Morse, Jennifer
    Pun, Anna
    Seelinger, George H.
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2024, 2024 (811): : 93 - 133
  • [25] The central polynomials for the Grassmann algebra
    Antônio Pereira Brandão
    Plamen Koshlukov
    Alexei Krasilnikov
    Élida Alves da Silva
    Israel Journal of Mathematics, 2010, 179 : 127 - 144
  • [26] Polynomials and equations in arabic algebra
    Oaks, Jeffrey A.
    ARCHIVE FOR HISTORY OF EXACT SCIENCES, 2009, 63 (02) : 169 - 203
  • [27] SCHUBERT POLYNOMIALS AND THE NILCOXETER ALGEBRA
    FOMIN, S
    STANLEY, RP
    ADVANCES IN MATHEMATICS, 1994, 103 (02) : 196 - 207
  • [28] Commutant algebra and harmonic polynomials of the Lie algebra of vector fields
    Nishiyama, K
    JOURNAL OF ALGEBRA, 1996, 183 (02) : 545 - 559
  • [30] Zeros of a Certain Class of Gauss Hypergeometric Polynomials
    Addisalem Abathun
    Rikard Bøgvad
    Czechoslovak Mathematical Journal, 2018, 68 : 1021 - 1031