LLT polynomials in the Schiffmann algebra

被引:0
|
作者
Blasiak, Jonah [1 ]
Haiman, Mark [2 ]
Morse, Jennifer [3 ]
Pun, Anna [4 ]
Seelinger, George H. [5 ]
机构
[1] Drexel Univ, Dept Math, Philadelphia, PA 19104 USA
[2] Univ Calif Berkeley, Dept Math, Berkeley, CA USA
[3] Univ Virginia, Dept Math, Charlottesville, VA USA
[4] Baruch Coll, Dept Math, CUNY, New York, NY USA
[5] Univ Michigan, Dept Math, Ann Arbor, MI USA
来源
基金
美国国家科学基金会;
关键词
HALL ALGEBRA; COMBINATORIAL FORMULA; ELLIPTIC CURVE;
D O I
10.1515/crelle-2024-0012
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We identify certain combinatorially defined rational functions which, under the shuffle to Schiffmann algebra isomorphism, map to LLT polynomials in any of the distinguished copies Lambda (X-m,X-n ) subset of E of the algebra of symmetric functions embedded in the elliptic Hall algebra E of Burban and Schiffmann. As a corollary, we deduce an explicit raising operator formula for the del operator applied to any LLT polynomial. In particular, we obtain a formula for backward difference del(m) s(lambda) which serves as a starting point for our proof of the Loehr-Warrington conjecture in a companion paper to this one.
引用
收藏
页码:93 / 133
页数:41
相关论文
共 50 条
  • [1] LLT Polynomials and Hecke Algebra Traces
    Morales, Alejandro H.
    Skandera, Mark A.
    Wang, Jiayuan
    ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2024, (403):
  • [2] A Vertex Model for LLT Polynomials
    Corteel, Sylvie
    Gitlin, Andrew
    Keating, David
    Meza, Jeremy
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2022, 2022 (20) : 15869 - 15931
  • [3] Noncommutative unicellular LLT polynomials
    Novelli, Jean-Christophe
    Thibon, Jean-Yves
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2021, 177
  • [4] A vertex model for supersymmetric LLT polynomials
    Gitlin, Andrew
    Keating, David
    ANNALES DE L INSTITUT HENRI POINCARE D, 2024, 11 (03): : 571 - 640
  • [5] Rational parking functions and LLT polynomials
    Gorsky, Eugene
    Mazin, Mikhail
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2016, 140 : 123 - 140
  • [6] Addendum to: Olivier Schiffmann, “Drinfeld realization of the elliptic Hall algebra”
    Dragos Fratila
    Journal of Algebraic Combinatorics, 2012, 35 (2) : 263 - 267
  • [7] LLT polynomials, elementary symmetric functions and melting lollipops
    Per Alexandersson
    Journal of Algebraic Combinatorics, 2021, 53 : 299 - 325
  • [8] Coloured corner processes from asymptotics of LLT polynomials
    Aggarwal, Amol
    Borodin, Alexei
    Wheeler, Michael
    ADVANCES IN MATHEMATICS, 2024, 451
  • [9] LLT polynomials, elementary symmetric functions and melting lollipops
    Alexandersson, Per
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2021, 53 (02) : 299 - 325
  • [10] LLT polynomials, chromatic quasisymmetric functions and graphs with cycles
    Alexandersson, Per
    Panova, Greta
    DISCRETE MATHEMATICS, 2018, 341 (12) : 3453 - 3482