METASTABILITY OF GINZBURG-LANDAU MODEL WITH A CONSERVATION LAW

被引:13
|
作者
YAU, HT
机构
[1] Courant Institute of Mathematical Sciences, New York University, New York
关键词
METASTABILITY; HYDRODYNAMICAL LIMIT; GINZBURG-LANDAU DYNAMICS; KAC POTENTIAL; EXPONENTIAL LIFETIME;
D O I
10.1007/BF02188577
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The hydrodynamics of Ginzburg-Landau dynamics has previously been proved to be a nonlinear diffusion equation. The diffusion coefficient is given by the second derivative of the free energy and hence nonnegative. We consider in this paper the Ginzburg-Landau dynamics with long-range interactions. In this case the diffusion coefficient is nonnegative only in the metastable region. We prove that if the initial condition is in the metastable region, then the hydrodynamics is governed by a nonlinear diffusion equation with the diffusion coefficient given by the metastable curve. Furthermore, the lifetime of the metastable state is proved to be exponentially large.
引用
收藏
页码:705 / 742
页数:38
相关论文
共 50 条
  • [21] ON THE GINZBURG-LANDAU EQUATIONS
    CARROLL, RW
    GLICK, AJ
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1964, 16 (05) : 373 - 384
  • [22] THE GINZBURG-LANDAU EQUATION
    ADOMIAN, G
    MEYERS, RE
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1995, 29 (03) : 3 - 4
  • [23] Vortex analysis of the periodic Ginzburg-Landau model
    Aydi, Hassen
    Sandier, Etienne
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2009, 26 (04): : 1223 - 1236
  • [24] Knot solitons in a modified Ginzburg-Landau model
    Jaeykkae, Juha
    Palmu, Joonatan
    PHYSICAL REVIEW D, 2011, 83 (10):
  • [25] Incommensurateness effects in a lattice Ginzburg-Landau model
    E. S. Babaev
    S. A. Ktitorov
    Physics of the Solid State, 1997, 39 : 1024 - 1027
  • [26] Ginzburg-Landau energy
    不详
    AMERICAN MATHEMATICAL MONTHLY, 2007, 114 (02): : 168 - 170
  • [27] Covariant gaussian approximation in Ginzburg-Landau model
    Wang, J. F.
    Li, D. P.
    Kao, H. C.
    Rosenstein, B.
    ANNALS OF PHYSICS, 2017, 380 : 228 - 254
  • [28] A Model for Vortex Nucleation in the Ginzburg-Landau Equations
    Iyer, Gautam
    Spirn, Daniel
    JOURNAL OF NONLINEAR SCIENCE, 2017, 27 (06) : 1933 - 1956
  • [29] ASYMPTOTIC BEHAVIOR OF A NONISOTHERMAL GINZBURG-LANDAU MODEL
    Grasselli, Maurizio
    Wu, Hao
    Zheng, Songmu
    QUARTERLY OF APPLIED MATHEMATICS, 2008, 66 (04) : 743 - 770
  • [30] Vortex analysis in the Ginzburg-Landau model of superconductivity
    Sandier, E
    Serfaty, S
    NONLINEAR PDE'S IN CONDENSED MATTER AND REACTIVE FLOWS, 2002, 569 : 491 - 506