METASTABILITY OF GINZBURG-LANDAU MODEL WITH A CONSERVATION LAW

被引:13
|
作者
YAU, HT
机构
[1] Courant Institute of Mathematical Sciences, New York University, New York
关键词
METASTABILITY; HYDRODYNAMICAL LIMIT; GINZBURG-LANDAU DYNAMICS; KAC POTENTIAL; EXPONENTIAL LIFETIME;
D O I
10.1007/BF02188577
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The hydrodynamics of Ginzburg-Landau dynamics has previously been proved to be a nonlinear diffusion equation. The diffusion coefficient is given by the second derivative of the free energy and hence nonnegative. We consider in this paper the Ginzburg-Landau dynamics with long-range interactions. In this case the diffusion coefficient is nonnegative only in the metastable region. We prove that if the initial condition is in the metastable region, then the hydrodynamics is governed by a nonlinear diffusion equation with the diffusion coefficient given by the metastable curve. Furthermore, the lifetime of the metastable state is proved to be exponentially large.
引用
收藏
页码:705 / 742
页数:38
相关论文
共 50 条
  • [31] Periodic minimizers of the anisotropic Ginzburg-Landau model
    Alama, Stan
    Bronsard, Lia
    Sandier, Etienne
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2009, 36 (03) : 399 - 417
  • [32] GINZBURG-LANDAU MODEL WITH SMALL PINNING DOMAINS
    Dos Santos, Mickael
    Misiats, Oleksandr
    NETWORKS AND HETEROGENEOUS MEDIA, 2011, 6 (04) : 715 - 753
  • [33] Masses and phase structure in the Ginzburg-Landau model
    Kajantie, K
    Karjalainen, M
    Laine, M
    Peisa, J
    PHYSICAL REVIEW B, 1998, 57 (05) : 3011 - 3016
  • [34] Gradient flow in the Ginzburg-Landau model of superconductivity
    Mikula, P.
    Carrington, M. E.
    Kunstatter, G.
    PHYSICAL REVIEW B, 2016, 94 (18)
  • [35] MOTION OF INTERACTING DEFECTS IN THE GINZBURG-LANDAU MODEL
    RODRIGUEZ, JD
    PISMEN, LM
    SIROVICH, L
    PHYSICAL REVIEW A, 1991, 44 (12): : 7980 - 7984
  • [36] Attractors of Modified Coupled Ginzburg-Landau Model
    Chen S.
    Liu S.
    Mathematical Problems in Engineering, 2023, 2023
  • [37] Pinning phenomena in the Ginzburg-Landau model of superconductivity
    Aftalion, A
    Sandier, E
    Serfaty, S
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2001, 80 (03): : 339 - 372
  • [38] Critical properties of the topological Ginzburg-Landau model
    de Calan, C
    Malbouisson, APC
    Nogueira, FS
    Svaiter, NF
    PHYSICAL REVIEW B, 1999, 59 (01) : 554 - 560
  • [40] MOTION OF VORTEX LINES IN THE GINZBURG-LANDAU MODEL
    PISMEN, LM
    RUBINSTEIN, J
    PHYSICA D-NONLINEAR PHENOMENA, 1991, 47 (03) : 353 - 360