ORTHONORMAL BASIS FOR SPLINE SIGNAL SPACES

被引:0
|
作者
KAMADA, M [1 ]
TORAICHI, K [1 ]
IKEBE, Y [1 ]
MORI, R [1 ]
机构
[1] UNIV TSUKUBA,INST INFORMAT SCI & ELECTR,SAKURA,IBARAKI 305,JAPAN
关键词
D O I
10.1080/00207728908910113
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
引用
收藏
页码:157 / 170
页数:14
相关论文
共 50 条
  • [41] On bivariate spline spaces
    Nürnberger, G
    Zeilfelder, F
    ADVANCES IN MULTIVARIATE APPROXIMATION, 1999, 107 : 227 - 230
  • [42] On orthonormal spline wavelets of multi-knots in the periodic case
    Shu, S
    Yu, HY
    Jin, JC
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 1999, 202 : 491 - 505
  • [43] Signal Reconstruction in Multi-Windows Spline-Spaces Using the Dual System
    Onchis, Darian M.
    IEEE SIGNAL PROCESSING LETTERS, 2012, 19 (11) : 729 - 732
  • [44] An algorithm for selection of best orthonormal rational basis
    Bodin, P
    Villemoes, LF
    Wahlberg, B
    PROCEEDINGS OF THE 36TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 1997, : 1277 - 1282
  • [45] An orthonormal basis functions method for moment problems
    Hon, YC
    Wei, T
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2002, 26 (10) : 855 - 860
  • [46] An Orthonormal Basis of Directional Haar Wavelets on Triangles
    Jens Krommweh
    Results in Mathematics, 2009, 53 : 323 - 331
  • [47] Orthonormal basis of wavelets with customizable frequency bands
    Toda, Hiroshi
    Zhang, Zhong
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2016, 14 (06)
  • [48] Exponential orthonormal basis of a class of Moran measures
    Cao, Jian
    Lu, Jian-Feng
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2025, 48 (01)
  • [49] Korobov Spaces with Respect to Digital Orthonormal Bases
    Gottlieb Pirsic
    Monatshefte für Mathematik, 2001, 132 : 153 - 168
  • [50] A CHARACTERIZATION OF ORTHONORMAL WAVELET FAMILIES IN SOBOLEV SPACES
    Lu Dayong
    Li Dengfeng
    ACTA MATHEMATICA SCIENTIA, 2011, 31 (04) : 1475 - 1488