ORTHONORMAL BASIS FOR SPLINE SIGNAL SPACES

被引:0
|
作者
KAMADA, M [1 ]
TORAICHI, K [1 ]
IKEBE, Y [1 ]
MORI, R [1 ]
机构
[1] UNIV TSUKUBA,INST INFORMAT SCI & ELECTR,SAKURA,IBARAKI 305,JAPAN
关键词
D O I
10.1080/00207728908910113
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
引用
收藏
页码:157 / 170
页数:14
相关论文
共 50 条
  • [21] ON LEXICOGRAPHIC ORDERING IN AN ORTHONORMAL BASIS
    NOLL, W
    AMERICAN MATHEMATICAL MONTHLY, 1967, 74 (02): : 212 - &
  • [22] Orthonormal bases for α-modulation spaces
    Nielsen, Morten
    COLLECTANEA MATHEMATICA, 2010, 61 (02) : 173 - 190
  • [23] Orthonormal bases for α-modulation spaces
    Morten Nielsen
    Collectanea mathematica, 2010, 61 : 173 - 190
  • [24] B-spline signal processing using harmonic basis functions
    Panda, R
    Chatterji, BN
    SIGNAL PROCESSING, 1999, 72 (03) : 147 - 166
  • [25] Multichannel frequency representation of a signal using harmonic spline basis functions
    Panda, R
    Sharma, V
    IETE JOURNAL OF RESEARCH, 2003, 49 (06) : 355 - 357
  • [26] Selection of best orthonormal rational basis
    Bodin, P
    Villemoes, LF
    Wahlberg, B
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2000, 38 (04) : 995 - 1032
  • [27] Orthonormal basis of the octonionic analytic functions
    Liao, Jian Quan
    Li, Xing Min
    Wang, Jin Xun
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 366 (01) : 335 - 344
  • [28] CANONICAL ORTHONORMAL WIGNER SUPERMULTIPLET BASIS
    HECHT, KT
    LEBLANC, R
    ROWE, DJ
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (02): : 257 - 275
  • [29] Tiling functions and Gabor orthonormal basis
    Agora, Elona
    Antezana, Jorge
    Kolountzakis, Mihail N.
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2020, 48 (01) : 96 - 122
  • [30] VARIATIONS OF ORTHONORMAL BASIS MATRICES OF SUBSPACES
    Teng, Zhongming
    Li, Ren-cang
    NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2025, 15 (02): : 444 - 458