ORTHONORMAL BASIS FOR SPLINE SIGNAL SPACES

被引:0
|
作者
KAMADA, M [1 ]
TORAICHI, K [1 ]
IKEBE, Y [1 ]
MORI, R [1 ]
机构
[1] UNIV TSUKUBA,INST INFORMAT SCI & ELECTR,SAKURA,IBARAKI 305,JAPAN
关键词
D O I
10.1080/00207728908910113
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
引用
收藏
页码:157 / 170
页数:14
相关论文
共 50 条
  • [31] REPRESENTING A CDF IN TERMS OF AN ORTHONORMAL BASIS
    GILFILLAN, C
    SOUTH AFRICAN STATISTICAL JOURNAL, 1979, 13 (02) : 186 - 186
  • [32] Complexity analysis of wavelet orthonormal basis
    Liu, JC
    Cai, ZY
    ICSP '98: 1998 FOURTH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, PROCEEDINGS, VOLS I AND II, 1998, : 275 - 278
  • [33] Orthonormal bases for anisotropic α-modulation spaces
    Rasmussen, Kenneth N.
    COLLECTANEA MATHEMATICA, 2012, 63 (01) : 109 - 121
  • [34] Orthonormal bases for anisotropic α-modulation spaces
    Kenneth N. Rasmussen
    Collectanea Mathematica, 2012, 63 : 109 - 121
  • [35] Orthonormal basis lattice neural networks
    Barmpoutis, Angelos
    Ritter, Gerhard X.
    COMPUTATIONAL INTELLIGENCE BASED ON LATTICE THEORY, 2007, 67 : 45 - +
  • [36] Asymptotically orthonormal basis and Toeplitz operators
    Fricain, Emmanuel
    Rupam, Rishika
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 474 (02) : 944 - 960
  • [37] Orthonormal Basis Lattice Neural Networks
    Barmpoutis, Angelos
    Ritter, Gerhard X.
    2006 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-5, 2006, : 331 - +
  • [38] Subdivision and Spline Spaces
    Schenck, Hal
    Sorokina, Tatyana
    CONSTRUCTIVE APPROXIMATION, 2018, 47 (02) : 237 - 247
  • [39] MULTIVARIATE SPLINE SPACES
    CHUI, CK
    WANG, RH
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1983, 94 (01) : 197 - 221
  • [40] Subdivision and Spline Spaces
    Hal Schenck
    Tatyana Sorokina
    Constructive Approximation, 2018, 47 : 237 - 247