Enhanced Electrochemical Properties of γ-MnS@rGO Composite as Anodes for Lithium-Ion Batteries

被引:1
|
作者
Nam, Wonbin [1 ,2 ]
Seong, Honggyu [1 ,2 ]
Moon, Joon Ha [1 ,2 ]
Jin, Youngho [1 ,2 ]
Kim, Geongil [1 ,2 ]
Yoo, Hyerin [1 ,2 ]
Jung, Taejung [1 ,2 ]
Yang, MinHo [3 ]
Cho, Se Youn [4 ]
Choi, Jaewon [1 ,2 ]
机构
[1] Gyeongsang Natl Univ, Dept Chem, Jinju 52828, South Korea
[2] Gyeongsang Natl Univ, Res Inst Nat Sci, Jinju 52828, South Korea
[3] Dankook Univ, Dept Energy Engn, Cheonan 31116, South Korea
[4] Korea Inst Sci & Technol, Inst Adv Composite Mat, Wanju Gun 55324, South Korea
基金
新加坡国家研究基金会;
关键词
anode materials; lithium-ion batteries; gamma-MnS; reduced graphene oxide; GRAPHENE OXIDE; ENERGY-STORAGE; NANOCOMPOSITES; CHALLENGES; LIFE;
D O I
10.1002/batt.202300274
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Manganese sulfide (MnS) is a metal chalcogenide with a high theoretical capacity (616 mAhg(-1)) and can be used as an alternative anode material for lithium-ion batteries. Generally, metal chalcogenides have intrinsic limitations, such as low stability resulting from volume expansion and poor electronic conductivity. Herein, the authors propose a synthesis strategy of nano-sized gamma-MnS, and one-step composite process by the growth of nanoparticles on the surface of reduced graphene oxide (rGO). These strategies can effectively prevent particle aggregation and enhance an electrochemical stability. The electrochemical performance of the gamma-MnS@rGO composite was evaluated using cyclic voltammetry (CV) and galvanostatic charge and discharge measurements. The results showed that the gamma-MnS@rGO composite delivered a high specific capacity (624 mAhg(-1) at 0.5 Ag-1 after 100 cycles), good cycling stability, and excellent rate capability compared to bare gamma-MnS.
引用
下载
收藏
页数:7
相关论文
共 50 条
  • [41] Facile synthesis of rGO/SnO2 composite anodes for lithium ion batteries
    Li, Suyuan
    Xie, Wenhe
    Wang, Suiyan
    Jiang, Xinyu
    Peng, Shanglong
    He, Deyan
    JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (40) : 17139 - 17145
  • [42] Enhanced Electrochemical Performance of Graphite Anodes for Lithium-Ion Batteries by Dry Coating with Hydrophobic Fumed Silica
    Lux, S. F.
    Placke, T.
    Engelhardt, C.
    Nowak, S.
    Bieker, P.
    Wirth, K-E
    Passerini, S.
    Winter, M.
    Meyer, H-W
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2012, 159 (11) : A1849 - A1855
  • [43] Electrochemical behavior of the composite anodes consisting of carbonaceous materials and lithium transition-metal nitrides for lithium-ion batteries
    Liu, Y.
    Mastumura, T.
    Ono, Y.
    Imanishi, N.
    Hirano, A.
    Takeda, Y.
    SOLID STATE IONICS, 2008, 179 (35-36) : 2069 - 2073
  • [44] Electrochemical behavior of the composite anodes consisting of carbonaceous materials and lithium transition-metal nitrides for lithium-ion batteries
    Hanai, K.
    Liu, Y.
    Matsumura, T.
    Imanishi, N.
    Hirano, A.
    Takeda, Y.
    SOLID STATE IONICS, 2008, 179 (27-32) : 1725 - 1730
  • [45] The Effect of Thermal Treatment on Properties of Composite Silicon-Carbon Anodes for Lithium-Ion Batteries
    Astrova, E. V.
    Parfeneva, A. V.
    Rumyantsev, A. M.
    Ulin, V. P.
    Baidakova, M. V.
    Nevedomskiy, V. N.
    Nashchekin, A. V.
    TECHNICAL PHYSICS LETTERS, 2020, 46 (02) : 114 - 117
  • [46] Polythiophene-coated nano-silicon composite anodes with enhanced performance for lithium-ion batteries
    Wang, Q. T.
    Li, R. R.
    Zhou, X. Z.
    Li, J.
    Lei, Z. Q.
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2016, 20 (05) : 1331 - 1336
  • [47] Polythiophene-coated nano-silicon composite anodes with enhanced performance for lithium-ion batteries
    Q. T. Wang
    R. R. Li
    X. Z. Zhou
    J. Li
    Z. Q. Lei
    Journal of Solid State Electrochemistry, 2016, 20 : 1331 - 1336
  • [48] Enhanced electrochemical performance of flower-like SnS2/NC@GO composite anodes for lithium-ion batteries
    Li, Rui
    Miao, Chang
    Yu, Limin
    Mou, Haoyi
    Zhang, Mengqiao
    Xiao, Wei
    SOLID STATE IONICS, 2020, 348
  • [49] Elemental Foil Anodes for Lithium-Ion Batteries
    Heligman, Brian T.
    Manthiram, Arumugam
    ACS ENERGY LETTERS, 2021, 6 (08) : 2666 - 2672
  • [50] Overview of carbon anodes for lithium-ion batteries
    Zaghib, K
    Kinoshita, K
    NEW TRENDS IN INTERCALATION COMPOUNDS FOR ENERGY STORAGE, 2002, 61 : 27 - 38