Enhanced Electrochemical Properties of γ-MnS@rGO Composite as Anodes for Lithium-Ion Batteries

被引:1
|
作者
Nam, Wonbin [1 ,2 ]
Seong, Honggyu [1 ,2 ]
Moon, Joon Ha [1 ,2 ]
Jin, Youngho [1 ,2 ]
Kim, Geongil [1 ,2 ]
Yoo, Hyerin [1 ,2 ]
Jung, Taejung [1 ,2 ]
Yang, MinHo [3 ]
Cho, Se Youn [4 ]
Choi, Jaewon [1 ,2 ]
机构
[1] Gyeongsang Natl Univ, Dept Chem, Jinju 52828, South Korea
[2] Gyeongsang Natl Univ, Res Inst Nat Sci, Jinju 52828, South Korea
[3] Dankook Univ, Dept Energy Engn, Cheonan 31116, South Korea
[4] Korea Inst Sci & Technol, Inst Adv Composite Mat, Wanju Gun 55324, South Korea
基金
新加坡国家研究基金会;
关键词
anode materials; lithium-ion batteries; gamma-MnS; reduced graphene oxide; GRAPHENE OXIDE; ENERGY-STORAGE; NANOCOMPOSITES; CHALLENGES; LIFE;
D O I
10.1002/batt.202300274
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Manganese sulfide (MnS) is a metal chalcogenide with a high theoretical capacity (616 mAhg(-1)) and can be used as an alternative anode material for lithium-ion batteries. Generally, metal chalcogenides have intrinsic limitations, such as low stability resulting from volume expansion and poor electronic conductivity. Herein, the authors propose a synthesis strategy of nano-sized gamma-MnS, and one-step composite process by the growth of nanoparticles on the surface of reduced graphene oxide (rGO). These strategies can effectively prevent particle aggregation and enhance an electrochemical stability. The electrochemical performance of the gamma-MnS@rGO composite was evaluated using cyclic voltammetry (CV) and galvanostatic charge and discharge measurements. The results showed that the gamma-MnS@rGO composite delivered a high specific capacity (624 mAhg(-1) at 0.5 Ag-1 after 100 cycles), good cycling stability, and excellent rate capability compared to bare gamma-MnS.
引用
下载
收藏
页数:7
相关论文
共 50 条
  • [11] Preparing graphene-based anodes with enhanced electrochemical performance for lithium-ion batteries
    Ershadi, Mahshid
    Javanbakht, Mehran
    Mozaffari, Sayed Ahmad
    Zahiri, Beniamin
    IONICS, 2020, 26 (10) : 4877 - 4895
  • [12] Preparing graphene-based anodes with enhanced electrochemical performance for lithium-ion batteries
    Mahshid Ershadi
    Mehran Javanbakht
    Sayed Ahmad Mozaffari
    Beniamin Zahiri
    Ionics, 2020, 26 : 4877 - 4895
  • [13] A Mapping of the Physical and Electrochemical Properties of Composite Lithium-Ion Batteries Anodes Made from Graphite, Sn, and Si
    Smrekar, Sacha
    Bracamonte, M. Victoria
    Primo, Emiliano N.
    Luque, Guillermina L.
    Thomas, Jorge
    Barraco, Daniel E.
    Leiva, Ezequiel
    BATTERIES & SUPERCAPS, 2020, 3 (11) : 1248 - 1256
  • [14] Electrochemical Characteristics of Nanostructured Silicon Anodes for Lithium-Ion Batteries
    Astrova, E. V.
    Li, G. V.
    Rumyantsev, A. M.
    Zhdanov, V. V.
    SEMICONDUCTORS, 2016, 50 (02) : 276 - 283
  • [15] A review of the electrochemical performance of alloy anodes for lithium-ion batteries
    Zhang, Wei-Jun
    JOURNAL OF POWER SOURCES, 2011, 196 (01) : 13 - 24
  • [16] Electrochemical characteristics of nanostructured silicon anodes for lithium-ion batteries
    E. V. Astrova
    G. V. Li
    A. M. Rumyantsev
    V. V. Zhdanov
    Semiconductors, 2016, 50 : 276 - 283
  • [17] Electrochemical Performance of Porous Carbon/Tin Composite Anodes for Sodium-Ion and Lithium-Ion Batteries
    Xu, Yunhua
    Zhu, Yujie
    Liu, Yihang
    Wang, Chunsheng
    ADVANCED ENERGY MATERIALS, 2013, 3 (01) : 128 - 133
  • [18] Rational combination of α-MnS/rGO nanocomposites for high-performance lithium-ion batteries
    Wang, Dandan
    Cai, Daoping
    Qu, Baihua
    Wang, Taihong
    CRYSTENGCOMM, 2016, 18 (33): : 6200 - 6204
  • [19] Composite SnO-graphite anodes for lithium-ion batteries
    Lee, JY
    Zhang, RF
    Liu, ZL
    LITHIUM BATTERIES, PROCEEDINGS, 2000, 99 (25): : 136 - 143
  • [20] Effect of modified elastomeric binders on the electrochemical properties of silicon anodes for lithium-ion batteries
    Tao Li
    Juan-yu Yang
    Shi-gang Lu
    International Journal of Minerals, Metallurgy, and Materials, 2012, 19 : 752 - 756