Electrochemical characteristics of nanostructured silicon anodes for lithium-ion batteries

被引:0
|
作者
E. V. Astrova
G. V. Li
A. M. Rumyantsev
V. V. Zhdanov
机构
[1] Russian Academy of Sciences,Ioffe Physical–Technical Institute
来源
Semiconductors | 2016年 / 50卷
关键词
Discharge Capacity; Grid Structure; Charge Capacity; Wall Height; Macroporous Silicon;
D O I
暂无
中图分类号
学科分类号
摘要
High-aspect periodic structures with thin vertical walls are studied as regards their applicability as negative electrodes of lithium-ion batteries. The nanostructures are fabricated from single-crystal silicon using photolithography, electrochemical anodization, and subsequent anisotropic shaping. The capacity per unit of the visible surface area of the electrode and the specific internal surface area are compared for structures of varied architecture: 1D (wires), 2D (zigzag walls), and 3D structures (walls forming a grid). Main attention is given to testing the endurance of anodes based on zigzag and grid structures, performed by galvanostatic cycling in half-cells with a lithium counter electrode. The influence exerted by the geometric parameters of the structures and by the testing mode on the degradation rate is determined. It is shown that the limiting factor of the lithiation and delithiation processes is diffusion. The endurance of an electrode dramatically increases when the charging capacity is limited to ∼1000 mA h/g. In this case, nanostructures with 300-nm-thick walls, which underwent cyclic testing at a rate of 0.36C, retain a constant discharge capacity and a Coulomb efficiency close to 100% for more than 1000 cycles.
引用
收藏
页码:276 / 283
页数:7
相关论文
共 50 条
  • [1] Electrochemical Characteristics of Nanostructured Silicon Anodes for Lithium-Ion Batteries
    Astrova, E. V.
    Li, G. V.
    Rumyantsev, A. M.
    Zhdanov, V. V.
    [J]. SEMICONDUCTORS, 2016, 50 (02) : 276 - 283
  • [2] Nanostructured Silicon Anodes for High-Performance Lithium-Ion Batteries
    Rahman, Md. Arafat
    Song, Guangsheng
    Bhatt, Anand I.
    Wong, Yat Choy
    Wen, Cuie
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2016, 26 (05) : 647 - 678
  • [3] Electrochemical characteristics and energy densities of lithium-ion batteries using mesoporous silicon and graphite as anodes
    Park, Hyejeong
    Yoon, Naeun
    Kang, DongHwan
    Young, Chohee
    Lee, Jung Kyoo
    [J]. ELECTROCHIMICA ACTA, 2020, 357
  • [4] Nanostructured Silicon Anodes for Lithium Ion Rechargeable Batteries
    Teki, Ranganath
    Datta, Moni K.
    Krishnan, Rahul
    Parker, Thomas C.
    Lu, Toh-Ming
    Kumta, Prashant N.
    Koratkar, Nikhil
    [J]. SMALL, 2009, 5 (20) : 2236 - 2242
  • [5] Microstructured silicon anodes for lithium-ion batteries
    G. V. Li
    E. V. Astrova
    A. M. Rumyantsev
    V. B. Voronkov
    A. V. Parfen’eva
    V. A. Tolmachev
    T. L. Kulova
    A. M. Skundin
    [J]. Russian Journal of Electrochemistry, 2015, 51 : 899 - 907
  • [6] Microstructured silicon anodes for lithium-ion batteries
    Li, G. V.
    Astrova, E. V.
    Rumyantsev, A. M.
    Voronkov, V. B.
    Parfen'eva, A. V.
    Tolmachev, V. A.
    Kulova, T. L.
    Skundin, A. M.
    [J]. RUSSIAN JOURNAL OF ELECTROCHEMISTRY, 2015, 51 (10) : 899 - 907
  • [7] Nanostructured Si-Based Anodes for Lithium-Ion Batteries
    Zhu, Xiaoyi
    Yang, Dongjiang
    Li, Jianjiang
    Su, Fabing
    [J]. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2015, 15 (01) : 15 - 30
  • [8] SILICON ANODES WILL GIVE LITHIUM-ION BATTERIES A BOOST
    Schneider, David
    [J]. IEEE SPECTRUM, 2019, 56 (01) : 48 - 49
  • [9] Dendrite formation in silicon anodes of lithium-ion batteries
    Selis, Luis A.
    Seminario, Jorge M.
    [J]. RSC ADVANCES, 2018, 8 (10) : 5255 - 5267
  • [10] Effect of modified elastomeric binders on the electrochemical properties of silicon anodes for lithium-ion batteries
    Tao Li
    Juan-yu Yang
    Shi-gang Lu
    [J]. International Journal of Minerals, Metallurgy, and Materials, 2012, 19 : 752 - 756