THE DIAGONAL MAP IN HOMOLOGY OF LEIBNIZ ALGEBRAS

被引:0
|
作者
OUDOM, JM
机构
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let k be a field and let g be a Leibniz algebra over k. The diagonal map g --> g + g induces a graded linear map HL(*) (g) --> HL(*) (g + g) where HL(*) stands for Leibniz homology. By using the Kunneth style formula of [5], we obtain a graded linear map Phi : HL(*) (g) --> HL(*) (g) * HL(*) (g) = k + HL(*)($) over bar ($) over bar (g) + HL(*)($) over bar ($) over bar (g) + (HL(*)($) over bar ($) over bar (g) x HL(*)($) over bar ($) over bar (g)) + ..., where HL(*)($) over bar ($) over bar (g) = +(p greater than or equal to 1) HL(p) (g). Let Delta be the projection of Phi onto the first factor HL(*)($) over bar ($) over bar (g) x HL(*)($) over bar ($) over bar (g) then Delta defines a coproduct on HL(*)($) over bar ($) over bar (g). We will first see how strongly related to a cup-product in Leibniz cohomology Delta is. Next, we will give a complete description of Phi according to Delta.
引用
收藏
页码:1165 / 1170
页数:6
相关论文
共 50 条
  • [1] On the Leibniz homology of Poisson algebras
    Papadopoulo, G
    LETTERS IN MATHEMATICAL PHYSICS, 2000, 54 (04) : 237 - 247
  • [2] On the Leibniz Homology of Poisson Algebras
    Georges Papadopoulo
    Letters in Mathematical Physics, 2000, 54 : 237 - 247
  • [3] Leibniz homology of Lie algebras as functor homology
    Hoffbeck, Eric
    Vespa, Christine
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2015, 219 (09) : 3721 - 3742
  • [4] Leibniz homology of extended Lie algebras
    Gnedbaye, AV
    K-THEORY, 1998, 13 (02): : 169 - 178
  • [5] On the second relative homology of Leibniz algebras
    Edalatzadeh, Behrouz
    Hosseini, Seyedeh Narges
    Salemkar, Ali Reza
    ADVANCED STUDIES-EURO-TBILISI MATHEMATICAL JOURNAL, 2024, 17 (01): : 57 - 69
  • [6] Leibniz homology of unitary Lie algebras
    Gao, Y
    JOURNAL OF PURE AND APPLIED ALGEBRA, 1999, 140 (01) : 33 - 56
  • [7] The second relative homology of Leibniz algebras
    Hosseini, Seyedeh Narges
    Edalatzadeh, Behrouz
    Salemkar, Ali Reza
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2020, 224 (01) : 206 - 217
  • [8] LEIBNIZ HOMOLOGY OF SEMISIMPLE LIE-ALGEBRAS
    NTOLO, P
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1994, 318 (08): : 707 - 710
  • [9] Some notes on the second homology of Leibniz algebras
    Edalatzadeh, Behrouz
    Veisi, Banafsheh
    COMMUNICATIONS IN ALGEBRA, 2018, 46 (03) : 1011 - 1017
  • [10] UNIVERSAL ENVELOPING-ALGEBRAS OF LEIBNIZ ALGEBRAS AND (CO)HOMOLOGY
    LODAY, JL
    PIRASHVILI, T
    MATHEMATISCHE ANNALEN, 1993, 296 (01) : 139 - 158