LIE-POISSON INTEGRATORS FOR RIGID-BODY DYNAMICS IN THE SOLAR-SYSTEM

被引:74
|
作者
TOUMA, J [1 ]
WISDOM, J [1 ]
机构
[1] MIT, DEPT EARTH ATMOSPHER & PLANETARY SCI, CAMBRIDGE, MA 02139 USA
来源
ASTRONOMICAL JOURNAL | 1994年 / 107卷 / 03期
关键词
D O I
10.1086/116931
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The n-body mapping method of Wisdom & Holman [AJ, 102, 1528 (1991)] is generalized to encompass rotational dynamics. The Lie-Poisson structure of rigid body dynamics is discussed. Integrators which preserve that structure are derived for the motion of a free rigid body and for the motion of rigid bodies interacting gravitationally with mass points.
引用
收藏
页码:1189 / 1202
页数:14
相关论文
共 50 条
  • [1] LIE-POISSON INTEGRATION FOR RIGID-BODY DYNAMICS
    LI, S
    QIN, MZ
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1995, 30 (09) : 105 - 118
  • [2] LIE-POISSON INTEGRATORS FOR A RIGID SATELLITE ON A CIRCULAR ORBIT
    Aydin, A.
    [J]. TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2011, 1 (02): : 150 - 161
  • [3] LIE-POISSON HAMILTON-JACOBI THEORY AND LIE-POISSON INTEGRATORS
    ZHONG, G
    MARSDEN, JE
    [J]. PHYSICS LETTERS A, 1988, 133 (03) : 134 - 139
  • [4] SPLITTING INTEGRATORS FOR STOCHASTIC LIE-POISSON SYSTEMS
    Brehier, Charles-Edouard
    Cohen, David
    Jahnke, Tobias
    [J]. MATHEMATICS OF COMPUTATION, 2023, 92 (343) : 2167 - 2216
  • [5] Casimir preserving stochastic Lie-Poisson integrators
    Luesink, Erwin
    Ephrati, Sagy
    Cifani, Paolo
    Geurts, Bernard
    [J]. ADVANCES IN CONTINUOUS AND DISCRETE MODELS, 2024, 2024 (01):
  • [6] INTEGRATORS FOR LIE-POISSON DYNAMIC-SYSTEMS
    CHANNELL, PJ
    SCOVEL, JC
    [J]. PHYSICA D, 1991, 50 (01): : 80 - 88
  • [7] Lie-Poisson integrators: A Hamiltonian, variational approach
    Ma, Zhanhua
    Rowley, Clarence W.
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2010, 82 (13) : 1609 - 1644
  • [9] SYMPLECTIC INTEGRATORS FOR SOLAR-SYSTEM DYNAMICS
    SAHA, P
    TREMAINE, S
    [J]. ASTRONOMICAL JOURNAL, 1992, 104 (04): : 1633 - 1640
  • [10] Collective Lie-Poisson integrators on R3
    McLachlan, Robert I.
    Modin, Klas
    Verdier, Olivier
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2015, 35 (02) : 546 - 560