LIE-POISSON INTEGRATORS FOR RIGID-BODY DYNAMICS IN THE SOLAR-SYSTEM

被引:74
|
作者
TOUMA, J [1 ]
WISDOM, J [1 ]
机构
[1] MIT, DEPT EARTH ATMOSPHER & PLANETARY SCI, CAMBRIDGE, MA 02139 USA
来源
ASTRONOMICAL JOURNAL | 1994年 / 107卷 / 03期
关键词
D O I
10.1086/116931
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The n-body mapping method of Wisdom & Holman [AJ, 102, 1528 (1991)] is generalized to encompass rotational dynamics. The Lie-Poisson structure of rigid body dynamics is discussed. Integrators which preserve that structure are derived for the motion of a free rigid body and for the motion of rigid bodies interacting gravitationally with mass points.
引用
收藏
页码:1189 / 1202
页数:14
相关论文
共 50 条
  • [31] ON THE TRANSITIVITY EQUATIONS OF RIGID-BODY DYNAMICS
    PAPASTAVRIDIS, JG
    [J]. JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1992, 59 (04): : 955 - 962
  • [32] The complete integrability of a Lie-Poisson system proposed by Bloch and Iserles
    Li, Luen-Chau
    Tomei, Carlos
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2006, 2006
  • [33] The conversion of rigid-body rotational dynamics to particle dynamics
    Wang, WT
    Chang, CO
    Chou, CS
    [J]. JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 1998, 37 (12A): : 6657 - 6661
  • [34] Conversion of rigid-body rotational dynamics to particle dynamics
    Wang, Wen-Tsung
    Chang, Chia-Ou
    Chou, Chan-Shin
    [J]. Japanese Journal of Applied Physics, Part 1: Regular Papers & Short Notes & Review Papers, 1998, 37 (12 A): : 6657 - 6661
  • [35] A Reparametrization of the Rotation Matrix in Rigid-Body Dynamics
    Zhu, Xiaoqing
    Angeles, Jorge
    [J]. JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2015, 82 (05):
  • [36] PREDICTING REBOUNDS USING RIGID-BODY DYNAMICS
    SMITH, CE
    BRACH, RM
    [J]. JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1992, 59 (03): : 700 - 700
  • [37] The Lie-Poisson structure of the symmetry reduced regularized n-body problem
    Arunasalam, Suntharan
    Dullin, Holger R.
    Nguyen, Diana M. H.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (06)
  • [38] Variational problem for Hamiltonian system on so(k, m) Lie-Poisson manifold and dynamics of semiclassical spin
    Deriglazov, A. A.
    [J]. MODERN PHYSICS LETTERS A, 2014, 29 (10)
  • [39] Position-based rigid-body dynamics
    Deul, Crispin
    Charrier, Patrick
    Bender, Jan
    [J]. COMPUTER ANIMATION AND VIRTUAL WORLDS, 2016, 27 (02) : 103 - 112
  • [40] Some Convergence Results in Rigid-Body Dynamics
    Gavrea, Bogdan
    [J]. NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS 1 AND 2, 2009, 1168 : 1396 - 1399