Many cliques in H-free subgraphs of random graphs

被引:0
|
作者
Alon, Noga [1 ,2 ,3 ]
Kostochka, Alexandr [4 ,5 ]
Shikhelman, Clara [1 ]
机构
[1] Tel Aviv Univ, Sackler Sch Math, IL-69978 Tel Aviv, Israel
[2] Tel Aviv Univ, Blavatnik Sch Comp Sci, IL-69978 Tel Aviv, Israel
[3] Harvard Univ, Cambridge, MA 02138 USA
[4] Univ Illinois, Dept Math, Urbana, IL 61801 USA
[5] Sobolev Inst Math, Novosibirsk 630090, Russia
基金
俄罗斯基础研究基金会;
关键词
Turan type problems; random graphs; chromatic number;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For two fixed graphs T and H let ex(G(n,p),T, H) be the random variable counting the maximum number of copies of T in an H-free subgraph of the random graph G(n,p). We show that for the case T = K-m and chi(H) > m the behavior of ex(G(n,p), K-m, H) depends strongly on the relation between p and m(2)(H) - MRXH' subset of, vertical bar V (H') vertical bar >= 3{e(H')-1/v(H')-2}. When m(2) (H) > m(2)(K-m) we prove that with high probability, depending on the value of p, either one can maintain almost all copies of K-m, or it is asymptotically best to take a chi(H) - 1 partite subgraph of G(n, p) . The transition between these two behaviors occurs at p = n(-1/m2(H)). When m(2)(H) < m(2)(K-m) we show that the above cases still exist, however for delta > 0 small at p = n(-1/m2(H)+delta) one can typically still keep most of the copies of K-m in an H-free subgraph of G(n,p). Thus, the transition between the two behaviors in this case occurs at some p significantly bigger than n(-1/m2(H)). To show that the second case is not redundant we present a construction which may be of independent interest. For each k >= 4 we construct a family of k-chromatic graphs G(k, epsilon(i)) where m(2) (G(k, epsilon(i))) tends to (k+1)(k-2)/2( k- 1) < m(2) (Kk-1) as i tends to infinity. This is tight for all values of k as for any k-chromatic graph G, m(2) (G) > (k+1)(k-2)/2(k-1).
引用
收藏
页码:567 / 597
页数:31
相关论文
共 50 条
  • [21] Counting H-free graphs
    Promel, HJ
    Steger, A
    DISCRETE MATHEMATICS, 1996, 154 (1-3) : 311 - 315
  • [22] Choosability on H-free graphs
    Golovach, Petr A.
    Heggernes, Pinar
    van't Hof, Pim
    Paulusma, Daniel
    INFORMATION PROCESSING LETTERS, 2013, 113 (04) : 107 - 110
  • [23] MaxCut in H-free graphs
    Alon, N
    Krivelevich, M
    Sudakov, B
    COMBINATORICS PROBABILITY & COMPUTING, 2005, 14 (5-6): : 629 - 647
  • [24] Counting H-free orientations of graphs
    Bucic, Matija
    Janzer, Oliver
    Sudakov, Benny
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2023, 174 (01) : 79 - 95
  • [25] Extremal H-free planar graphs
    Lan, Yongxin
    Shi, Yongtang
    Song, Zi-Xia
    ELECTRONIC JOURNAL OF COMBINATORICS, 2019, 26 (02):
  • [26] On Subgraph Complementation to H-free Graphs
    Dhanyamol Antony
    Jay Garchar
    Sagartanu Pal
    R. B. Sandeep
    Sagnik Sen
    R. Subashini
    Algorithmica, 2022, 84 : 2842 - 2870
  • [27] Orthonormal Representations of H-Free Graphs
    Igor Balla
    Shoham Letzter
    Benny Sudakov
    Discrete & Computational Geometry, 2020, 64 : 654 - 670
  • [28] Clique covers of H-free graphs
    Nguyen, Tung
    Scott, Alex
    Seymour, Paul
    Thomasse, Stephan
    EUROPEAN JOURNAL OF COMBINATORICS, 2024, 118
  • [29] On Subgraph Complementation to H-free Graphs
    Antony, Dhanyamol
    Garchar, Jay
    Pal, Sagartanu
    Sandeep, R. B.
    Sen, Sagnik
    Subashini, R.
    ALGORITHMICA, 2022, 84 (10) : 2842 - 2870
  • [30] Orthonormal Representations of H-Free Graphs
    Balla, Igor
    Letzter, Shoham
    Sudakov, Benny
    DISCRETE & COMPUTATIONAL GEOMETRY, 2020, 64 (03) : 654 - 670