Extremal H-free planar graphs

被引:0
|
作者
Lan, Yongxin [1 ,2 ]
Shi, Yongtang [1 ,2 ]
Song, Zi-Xia [3 ]
机构
[1] Nankai Univ, Ctr Combinator, Tianjin, Peoples R China
[2] Nankai Univ, LPMC, Tianjin, Peoples R China
[3] Univ Cent Florida, Dept Math, Orlando, FL 32816 USA
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2019年 / 26卷 / 02期
基金
中国国家自然科学基金;
关键词
TURAN NUMBERS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a graph H, a graph is H-free if it does not contain H as a subgraph. We continue to study the topic of "extremal" planar graphs initiated by Dowden [J. Graph Theory 83 (2016) 213 230], that is, how many edges can an H-free planar graph on n vertices have? We define ex(p) (n, H) to be the maximum number of edges in an H-free planar graph on n vertices. We first obtain several sufficient conditions on H which yield ex(p) (n, H) = 3n - 6 for all n >= vertical bar V(H)vertical bar. We discover that the chromatic number of H does not play a role, as in the celebrated Erdos-Stone Theorem. We then completely determine ex(p) (n, H) when H is a wheel or a star. Finally, we examine the case when H is a (t, r)-fan, that is, H is isomorphic to K-1 + tK(r-1), where t >= 2 and r >= 3 are integers. However, determining ex(p)(n, H), when H is a planar subcubic graph, remains wide open.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] On Switching to H-Free Graphs
    Jelinkova, Eva
    Kratochvil, Jan
    [J]. GRAPH TRANSFORMATIONS, ICGT 2008, 2008, 5214 : 379 - 395
  • [2] On Switching to H-Free Graphs
    Jelinkova, Eva
    Kratochvil, Jan
    [J]. JOURNAL OF GRAPH THEORY, 2014, 75 (04) : 387 - 405
  • [3] Counting H-free graphs
    Promel, HJ
    Steger, A
    [J]. DISCRETE MATHEMATICS, 1996, 154 (1-3) : 311 - 315
  • [4] Choosability on H-free graphs
    Golovach, Petr A.
    Heggernes, Pinar
    van't Hof, Pim
    Paulusma, Daniel
    [J]. INFORMATION PROCESSING LETTERS, 2013, 113 (04) : 107 - 110
  • [5] MaxCut in H-free graphs
    Alon, N
    Krivelevich, M
    Sudakov, B
    [J]. COMBINATORICS PROBABILITY & COMPUTING, 2005, 14 (5-6): : 629 - 647
  • [6] Counting H-free orientations of graphs
    Bucic, Matija
    Janzer, Oliver
    Sudakov, Benny
    [J]. MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2023, 174 (01) : 79 - 95
  • [7] On Subgraph Complementation to H-free Graphs
    Dhanyamol Antony
    Jay Garchar
    Sagartanu Pal
    R. B. Sandeep
    Sagnik Sen
    R. Subashini
    [J]. Algorithmica, 2022, 84 : 2842 - 2870
  • [8] BIPARTITE SUBGRAPHS OF H-FREE GRAPHS
    Zeng, Qinghou
    Hou, Jianfeng
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2017, 96 (01) : 1 - 13
  • [9] Orthonormal Representations of H-Free Graphs
    Igor Balla
    Shoham Letzter
    Benny Sudakov
    [J]. Discrete & Computational Geometry, 2020, 64 : 654 - 670
  • [10] On Subgraph Complementation to H-free Graphs
    Antony, Dhanyamol
    Garchar, Jay
    Pal, Sagartanu
    Sandeep, R. B.
    Sen, Sagnik
    Subashini, R.
    [J]. ALGORITHMICA, 2022, 84 (10) : 2842 - 2870