Many cliques in H-free subgraphs of random graphs

被引:0
|
作者
Alon, Noga [1 ,2 ,3 ]
Kostochka, Alexandr [4 ,5 ]
Shikhelman, Clara [1 ]
机构
[1] Tel Aviv Univ, Sackler Sch Math, IL-69978 Tel Aviv, Israel
[2] Tel Aviv Univ, Blavatnik Sch Comp Sci, IL-69978 Tel Aviv, Israel
[3] Harvard Univ, Cambridge, MA 02138 USA
[4] Univ Illinois, Dept Math, Urbana, IL 61801 USA
[5] Sobolev Inst Math, Novosibirsk 630090, Russia
基金
俄罗斯基础研究基金会;
关键词
Turan type problems; random graphs; chromatic number;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For two fixed graphs T and H let ex(G(n,p),T, H) be the random variable counting the maximum number of copies of T in an H-free subgraph of the random graph G(n,p). We show that for the case T = K-m and chi(H) > m the behavior of ex(G(n,p), K-m, H) depends strongly on the relation between p and m(2)(H) - MRXH' subset of, vertical bar V (H') vertical bar >= 3{e(H')-1/v(H')-2}. When m(2) (H) > m(2)(K-m) we prove that with high probability, depending on the value of p, either one can maintain almost all copies of K-m, or it is asymptotically best to take a chi(H) - 1 partite subgraph of G(n, p) . The transition between these two behaviors occurs at p = n(-1/m2(H)). When m(2)(H) < m(2)(K-m) we show that the above cases still exist, however for delta > 0 small at p = n(-1/m2(H)+delta) one can typically still keep most of the copies of K-m in an H-free subgraph of G(n,p). Thus, the transition between the two behaviors in this case occurs at some p significantly bigger than n(-1/m2(H)). To show that the second case is not redundant we present a construction which may be of independent interest. For each k >= 4 we construct a family of k-chromatic graphs G(k, epsilon(i)) where m(2) (G(k, epsilon(i))) tends to (k+1)(k-2)/2( k- 1) < m(2) (Kk-1) as i tends to infinity. This is tight for all values of k as for any k-chromatic graph G, m(2) (G) > (k+1)(k-2)/2(k-1).
引用
收藏
页码:567 / 597
页数:31
相关论文
共 50 条
  • [41] Max-Bisections of H-free graphs
    Hou, Jianfeng
    Yan, Juan
    DISCRETE MATHEMATICS, 2020, 343 (0I)
  • [42] Partitioning H-free graphs of bounded diameter
    Brause, Christoph
    Golovach, Petr
    Martin, Barnaby
    Paulusma, Daniël
    Smith, Siani
    Theoretical Computer Science, 2022, 930 : 37 - 52
  • [43] Critical vertices and edges in H-free graphs
    Paulusma, Daniel
    Picouleau, Christophe
    Ries, Bernard
    DISCRETE APPLIED MATHEMATICS, 2019, 257 : 361 - 367
  • [44] Computing subset transversals in H-free graphs
    Brettell, Nick
    Johnson, Matthew
    Paesani, Giacomo
    Paulusma, Daniel
    THEORETICAL COMPUTER SCIENCE, 2022, 902 : 76 - 92
  • [45] Contraction and deletion blockers for perfect graphs and H-free graphs
    Diner, Oznur Yasar
    Paulusma, Daniel
    Picouleau, Christophe
    Ries, Bernard
    THEORETICAL COMPUTER SCIENCE, 2018, 746 : 49 - 72
  • [46] Finding Matching Cuts in H-Free Graphs
    Felicia Lucke
    Daniël Paulusma
    Bernard Ries
    Algorithmica, 2023, 85 : 3290 - 3322
  • [47] Chromatic symmetric functions and H-free graphs
    Hamel, Angele M.
    Hoang, Chinh T.
    Tuero, Jake E.
    GRAPHS AND COMBINATORICS, 2019, 35 (04) : 815 - 825
  • [48] Partitioning H-free graphs of bounded diameter
    Brause, Christoph
    Golovach, Petr
    Martin, Barnaby
    Paulusma, Daniel
    Smith, Siani
    THEORETICAL COMPUTER SCIENCE, 2022, 930 : 37 - 52
  • [49] Maximal cliques in scale-free random graphs
    Blaesius, Thomas
    Katzmann, Maximillian
    Stegehuis, Clara
    NETWORK SCIENCE, 2024,
  • [50] Open Packing in H-free Graphs and Subclasses of Split Graphs
    Shalu, M. A.
    Kirubakaran, V. K.
    ALGORITHMS AND DISCRETE APPLIED MATHEMATICS, CALDAM 2024, 2024, 14508 : 239 - 251