NUMBER OF ZEROS OF DIAGONAL CUBIC FORMS

被引:19
|
作者
MYERSON, G
机构
关键词
D O I
10.1016/0022-314X(79)90023-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:95 / 99
页数:5
相关论文
共 50 条
  • [41] SMALL ZEROS OF QUADRATIC-FORMS OVER NUMBER-FIELDS
    VAALER, JD
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 302 (01) : 281 - 296
  • [42] ON ZEROS OF FORMS
    BROWKIN, J
    [J]. BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1969, 17 (10): : 611 - &
  • [43] On the Number of Zeros of Abelian Integral for a Class of Cubic Hamilton Systems with the Phase Portrait "Butterfly"
    Yang, Jihua
    Sui, Shiyou
    Zhao, Liqin
    [J]. QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2019, 18 (03) : 947 - 967
  • [44] On the Number of Zeros of Abelian Integral for a Class of Cubic Hamilton Systems with the Phase Portrait “Butterfly”
    Jihua Yang
    Shiyou Sui
    Liqin Zhao
    [J]. Qualitative Theory of Dynamical Systems, 2019, 18 : 947 - 967
  • [45] ON THE POINCARE-SERIES FOR DIAGONAL FORMS OVER ALGEBRAIC NUMBER-FIELDS
    WANG, J
    [J]. ACTA ARITHMETICA, 1993, 63 (02) : 97 - 101
  • [46] Diagonal quadratic forms representing all binary diagonal quadratic forms
    Ji, Yun-Seong
    Kim, Myeong Jae
    Oh, Byeong-Kweon
    [J]. RAMANUJAN JOURNAL, 2018, 45 (01): : 21 - 32
  • [47] LINEARLY INDEPENDENT ZEROS OF QUADRATIC-FORMS OVER NUMBER-FIELDS
    CHALK, JHH
    [J]. MONATSHEFTE FUR MATHEMATIK, 1980, 90 (01): : 13 - 25
  • [48] Diagonal quadratic forms representing all binary diagonal quadratic forms
    Yun-Seong Ji
    Myeong Jae Kim
    Byeong-Kweon Oh
    [J]. The Ramanujan Journal, 2018, 45 : 21 - 32
  • [49] DIAGONAL CUBIC EQUATIONS AND INEQUALITIES
    PITMAN, J
    RIDOUT, D
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1967, 297 (1451): : 476 - &
  • [50] ARITHMETIC OF DIAGONAL CUBIC SURFACES
    COLLIOTTHELENE, JL
    KANEVSKY, D
    SANSUC, JJ
    [J]. LECTURE NOTES IN MATHEMATICS, 1987, 1290 : 1 - 108