Diagonal quadratic forms representing all binary diagonal quadratic forms

被引:0
|
作者
Yun-Seong Ji
Myeong Jae Kim
Byeong-Kweon Oh
机构
[1] Korea Advanced Institute of Science and Technology,Department of Mathematical Sciences
[2] Seoul National University,Department of Mathematical Sciences
[3] Seoul National University,Department of Mathematical Sciences and Research Institute of Mathematics
来源
The Ramanujan Journal | 2018年 / 45卷
关键词
Diagonal quadratic forms; Representations of binary quadratic forms; 2-universal quadratic forms; Primary 11E12; 11E20;
D O I
暂无
中图分类号
学科分类号
摘要
A (positive definite integral) quadratic form is called diagonally 2-universal if it represents all positive definite integral binary diagonal quadratic forms. In this article, we show that, up to equivalence, there are exactly 18 (positive definite integral) quinary diagonal quadratic forms that are diagonally 2-universal. Furthermore, we provide a “diagonally 2-universal criterion” for diagonal quadratic forms, which is similar to “15-Theorem” proved by Conway and Schneeberger.
引用
收藏
页码:21 / 32
页数:11
相关论文
共 50 条
  • [1] Diagonal quadratic forms representing all binary diagonal quadratic forms
    Ji, Yun-Seong
    Kim, Myeong Jae
    Oh, Byeong-Kweon
    [J]. RAMANUJAN JOURNAL, 2018, 45 (01): : 21 - 32
  • [2] Density of positive diagonal binary quadratic forms
    Hanson, Brandon
    Vaughan, Robert
    [J]. ACTA ARITHMETICA, 2020, 193 (01) : 1 - 48
  • [3] Density of the union of positive diagonal binary quadratic forms
    Diao, Yijie
    [J]. ACTA ARITHMETICA, 2023, 207 (01) : 1 - 18
  • [4] Integral matrices as diagonal quadratic forms
    Lee, Jungin
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2018, 66 (04): : 742 - 747
  • [5] Convergence of quadratic forms with nonvanishing diagonal
    Bhansali, R. J.
    Giraitis, L.
    Kokoszka, P. S.
    [J]. STATISTICS & PROBABILITY LETTERS, 2007, 77 (07) : 726 - 734
  • [6] PRIME-UNIVERSAL DIAGONAL QUADRATIC FORMS
    Ju, Jangwon
    Kim, Daejun
    Kim, Kyoungmin
    Kim, Mingyu
    Oh, Byeong-Kweon
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2021, 103 (03) : 390 - 404
  • [7] Density of integer solutions to diagonal quadratic forms
    Browning, T. D.
    [J]. MONATSHEFTE FUR MATHEMATIK, 2007, 152 (01): : 13 - 38
  • [8] Density of integer solutions to diagonal quadratic forms
    T. D. Browning
    [J]. Monatshefte für Mathematik, 2007, 152 : 13 - 38
  • [9] A QUANTITATIVE OPPENHEIM THEOREM FOR GENERIC DIAGONAL QUADRATIC FORMS
    Bourgain, Jean
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2016, 215 (01) : 503 - 512
  • [10] Short proofs of the universality of certain diagonal quadratic forms
    Jesse I. Deutsch
    [J]. Archiv der Mathematik, 2008, 91 : 44 - 48