Diagonal quadratic forms representing all binary diagonal quadratic forms

被引:1
|
作者
Ji, Yun-Seong [1 ]
Kim, Myeong Jae [2 ]
Oh, Byeong-Kweon [2 ,3 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Math Sci, Daejeon 305701, South Korea
[2] Seoul Natl Univ, Dept Math Sci, Seoul 151747, South Korea
[3] Seoul Natl Univ, Res Inst Math, Seoul 151747, South Korea
来源
RAMANUJAN JOURNAL | 2018年 / 45卷 / 01期
基金
新加坡国家研究基金会;
关键词
Diagonal quadratic forms; Representations of binary quadratic forms; 2-universal quadratic forms; ODD POSITIVE INTEGERS; UNIVERSAL FORMS; RANK;
D O I
10.1007/s11139-016-9857-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A (positive definite integral) quadratic form is called diagonally 2-universal if it represents all positive definite integral binary diagonal quadratic forms. In this article, we show that, up to equivalence, there are exactly 18 (positive definite integral) quinary diagonal quadratic forms that are diagonally 2-universal. Furthermore, we provide a "diagonally 2-universal criterion" for diagonal quadratic forms, which is similar to "15-Theorem" proved by Conway and Schneeberger.
引用
收藏
页码:21 / 32
页数:12
相关论文
共 50 条
  • [1] Diagonal quadratic forms representing all binary diagonal quadratic forms
    Yun-Seong Ji
    Myeong Jae Kim
    Byeong-Kweon Oh
    The Ramanujan Journal, 2018, 45 : 21 - 32
  • [2] Density of positive diagonal binary quadratic forms
    Hanson, Brandon
    Vaughan, Robert
    ACTA ARITHMETICA, 2020, 193 (01) : 1 - 48
  • [3] Density of the union of positive diagonal binary quadratic forms
    Diao, Yijie
    ACTA ARITHMETICA, 2023, 207 (01) : 1 - 18
  • [4] Integral matrices as diagonal quadratic forms
    Lee, Jungin
    LINEAR & MULTILINEAR ALGEBRA, 2018, 66 (04): : 742 - 747
  • [5] Convergence of quadratic forms with nonvanishing diagonal
    Bhansali, R. J.
    Giraitis, L.
    Kokoszka, P. S.
    STATISTICS & PROBABILITY LETTERS, 2007, 77 (07) : 726 - 734
  • [6] Integral matrices as diagonal quadratic forms II
    Koo, Bonsoo
    Lee, Jungin
    LINEAR & MULTILINEAR ALGEBRA, 2025,
  • [7] PRIME-UNIVERSAL DIAGONAL QUADRATIC FORMS
    Ju, Jangwon
    Kim, Daejun
    Kim, Kyoungmin
    Kim, Mingyu
    Oh, Byeong-Kweon
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2021, 103 (03) : 390 - 404
  • [8] Density of integer solutions to diagonal quadratic forms
    Browning, T. D.
    MONATSHEFTE FUR MATHEMATIK, 2007, 152 (01): : 13 - 38
  • [9] Density of integer solutions to diagonal quadratic forms
    T. D. Browning
    Monatshefte für Mathematik, 2007, 152 : 13 - 38
  • [10] A QUANTITATIVE OPPENHEIM THEOREM FOR GENERIC DIAGONAL QUADRATIC FORMS
    Bourgain, Jean
    ISRAEL JOURNAL OF MATHEMATICS, 2016, 215 (01) : 503 - 512