On minimum cutsets in independent domination vertex-critical graphs

被引:0
|
作者
Ananchuen, Nawarat [1 ]
Ruangthampisan, Sriphan [2 ]
Ananchuen, Watcharaphong [3 ]
Caccetta, Louis [3 ]
机构
[1] Ctr Excellence Math, CHE, Si Ayutthaya Rd, Bangkok 10400, Thailand
[2] Silpakorn Univ, Fac Sci, Dept Math, Nakhon Pathom 73000, Thailand
[3] Curtin Univ, Dept Math & Stat, Western Australian Ctr Excellence Ind Optimisat, GPO Box U1987, Perth, WA 6845, Australia
来源
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let gamma(i)(G) denote the independent domination number of G. A graph G is said to be k-gamma(i)-vertex-critical if gamma(i)(G) = k and for each x is an element of V (G), gamma(i)(G - x) < k. In this paper, we show that for any k-gamma(i)-vertex-critical graph H of order n with k >= 3, there exists an n-connected k-gamma(i)-vertexcritical graph G(H) containing H as an induced subgraph. Consequently, there are infinitely many non-isomorphic connected k-gamma(i)-vertex-critical graphs. We also establish a number of properties of connected 3-gamma(i)-vertex-critical graphs. In particular, we derive an upper bound on omega(G-S), the number of components of G-S when G is a connected 3-gamma(i)-vertex-critical graph and S is a minimum cutset of G with vertical bar S vertical bar >= 3.
引用
收藏
页码:369 / 380
页数:12
相关论文
共 50 条
  • [1] The diameter of total domination and independent domination vertex-critical graphs
    Edwards, M.
    MacGillivray, G.
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2012, 52 : 33 - 39
  • [2] Independent Roman Domination Stable and Vertex-Critical Graphs
    Wu, Pu
    Shao, Zehui
    Zhu, Enqiang
    Jiang, Huiqin
    Nazari-Moghaddam, S.
    Sheikholeslami, Seyed Mahmoud
    IEEE ACCESS, 2018, 6 : 74737 - 74746
  • [3] On the Diameter of Total Domination Vertex-Critical Graphs
    Wang, Tao
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2016, 39 : S193 - S203
  • [4] On the Diameter of Total Domination Vertex-Critical Graphs
    Tao Wang
    Bulletin of the Malaysian Mathematical Sciences Society, 2016, 39 : 193 - 203
  • [5] Hamiltonicity of Domination Vertex-Critical Claw-Free Graphs
    Kaemawichanurat, Pawaton
    ARS COMBINATORIA, 2020, 152 : 13 - 29
  • [6] Dense critical and vertex-critical graphs
    Jensen, TR
    DISCRETE MATHEMATICS, 2002, 258 (1-3) : 63 - 84
  • [7] Packing chromatic vertex-critical graphs
    Klavzar, Sandi
    Rall, Douglas F.
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2019, 21 (03):
  • [8] On Game Chromatic Vertex-Critical Graphs
    Jakovac, Marko
    Stesl, Dasa
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2023, 46 (01)
  • [9] On Game Chromatic Vertex-Critical Graphs
    Marko Jakovac
    Daša Štesl
    Bulletin of the Malaysian Mathematical Sciences Society, 2023, 46
  • [10] VERTEX-CRITICAL GRAPHS OF GIVEN DIAMETER
    GLIVIAK, F
    ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1976, 27 (3-4): : 255 - 262