ON THE GENERALIZED GAUSS HYPERGEOMETRIC FUNCTION

被引:0
|
作者
Virchenko, N. A. [1 ]
机构
[1] Natl Tech Univ Ukraine KPI, Kiev, Ukraine
关键词
D O I
10.14498/vsgtu589
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this work the (tau, beta) hypergeometric Gauss function is considered, the basic properties of this function are investigated, some applications are given.
引用
收藏
页码:154 / 156
页数:3
相关论文
共 50 条
  • [21] Diophantine approximation of the values of hypergeometric function of Gauss
    Hirata-Kohno, Noriko
    Huttner, Marc
    DIOPHANTINE ANALYSIS AND RELATED FIELDS - DARF 2007/2008, 2008, 976 : 106 - +
  • [22] Multidomain spectral method for the Gauss hypergeometric function
    S. Crespo
    M. Fasondini
    C. Klein
    N. Stoilov
    C. Vallée
    Numerical Algorithms, 2020, 84 : 1 - 35
  • [23] ON GENERALIZED FRACTIONAL q-INTEGRAL OPERATORS INVOLVING THE q-GAUSS HYPERGEOMETRIC FUNCTION
    Purohit, Sunil Dutt
    Yadav, Rajendra Kumar
    BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 2 (04): : 35 - 44
  • [24] Fourier transform representation of the generalized hypergeometric functions with applications to the confluent and Gauss hypergeometric functions
    Al-Lail, Mohammed H.
    Qadir, Asghar
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 263 : 392 - 397
  • [25] Note on generalized hypergeometric function
    Rao, Snehal B.
    Shukla, A. K.
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2013, 24 (11) : 896 - 904
  • [26] ON GENERALIZED DOUBLE HYPERGEOMETRIC FUNCTION
    PATHAN, MA
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES, 1969, 39 : 309 - &
  • [27] A Note on Generating Functions Involving the Generalized Gauss Hypergeometric Functions
    P. Agarwal
    M. Chand
    S. D. Purohit
    National Academy Science Letters, 2014, 37 : 457 - 459
  • [28] A Note on Generating Functions Involving the Generalized Gauss Hypergeometric Functions
    Agarwal, P.
    Chand, M.
    Purohit, S. D.
    NATIONAL ACADEMY SCIENCE LETTERS-INDIA, 2014, 37 (05): : 457 - 459
  • [29] NUMERICAL EVALUATION OF THE GAUSS HYPERGEOMETRIC FUNCTION BY POWER SUMMATIONS
    Doornik, Jurgen A.
    MATHEMATICS OF COMPUTATION, 2015, 84 (294) : 1813 - 1833
  • [30] Pade approximation to the logarithmic derivative of the gauss hypergeometric function
    Hata, M
    Huttner, M
    ANALYTIC NUMBER THEORY, 2002, 6 : 157 - 172