Pade approximation to the logarithmic derivative of the gauss hypergeometric function

被引:0
|
作者
Hata, M [1 ]
Huttner, M [1 ]
机构
[1] Kyoto Univ, Fac Integrated Human Studies, Div Math, Kyoto 6068501, Japan
来源
ANALYTIC NUMBER THEORY | 2002年 / 6卷
关键词
Pade approximation; Gauss hypergeometric function;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct explicitly (n, n-1)-Pade approximation to the logarithmic derivative of Gauss hypergeometric function for arbitrary parameters by the simple combinatorial method used by Maier and Chudnovsky.
引用
收藏
页码:157 / 172
页数:16
相关论文
共 50 条
  • [1] Diophantine approximation of the values of hypergeometric function of Gauss
    Hirata-Kohno, Noriko
    Huttner, Marc
    DIOPHANTINE ANALYSIS AND RELATED FIELDS - DARF 2007/2008, 2008, 976 : 106 - +
  • [2] Approximation of Values of the Gauss Hypergeometric Function by Rational Fractions
    Bashmakova, M. G.
    MATHEMATICAL NOTES, 2010, 88 (5-6) : 785 - 797
  • [3] Approximation of values of the Gauss hypergeometric function by rational fractions
    M. G. Bashmakova
    Mathematical Notes, 2010, 88 : 785 - 797
  • [4] Gauss' hypergeometric function
    Beukers, Frits
    ARITHMETIC AND GEOMETRY AROUND HYPERGEOMETRIC FUNCTIONS, 2007, 260 : 23 - 42
  • [5] ON THE EVALUATION OF THE GAUSS HYPERGEOMETRIC FUNCTION
    KALLA, SL
    DOKLADI NA BOLGARSKATA AKADEMIYA NA NAUKITE, 1992, 45 (06): : 35 - 36
  • [6] ON THE GENERALIZED GAUSS HYPERGEOMETRIC FUNCTION
    Virchenko, N. A.
    VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI, 2008, (01): : 154 - 156
  • [7] Blossoming and Hermite-Pade approximation for hypergeometric series
    Ait-Haddou, Rachid
    Mazure, Marie-Laurence
    NUMERICAL ALGORITHMS, 2021, 88 (03) : 1183 - 1214
  • [8] Gauss-Manin connexions, logarithmic forms and hypergeometric functions
    Aleksandrov, AG
    Tanabe, S
    GEOMETRY FROM THE PACIFIC RIM, 1997, : 1 - 21
  • [9] Extension of Pochhammer symbol, generalized hypergeometric function and τ-Gauss hypergeometric function
    Yadav, Komal Singh
    Sharan, Bhagwat
    Verma, Ashish
    ANALYSIS-INTERNATIONAL MATHEMATICAL JOURNAL OF ANALYSIS AND ITS APPLICATIONS, 2024,
  • [10] IRRATIONALITY OF GAUSS HYPERGEOMETRIC FUNCTION VALUES
    VASILENKO, ON
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1985, (03): : 15 - 18