Note on generalized hypergeometric function

被引:6
|
作者
Rao, Snehal B. [1 ]
Shukla, A. K. [2 ]
机构
[1] Maharaja Sayajirao Univ Baroda, Dept Appl Math, Vadodara 390001, India
[2] SV Natl Inst Technol, Dept Appl Math & Humanities, Surat 395007, India
关键词
generalized hypergeometric function; integral representation; fractional integral and differential operators; 33C20; 33E20; 26A33;
D O I
10.1080/10652469.2013.773327
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Virchenko and Rumiantseva [On the generalized associated legendre functions. Fract Cal Appl Anal. 2008; 11(2): 175- 185] gave another generalization F-2(1)tau,beta(a, b; c; z) of the hypergeometric function. In this paper, we give integral representations and differentiation formulae of F-2(1)tau,beta (a, b; c; z), alongwith relation of F-2(1)tau,beta (a, b; c; z) with the generalized Mittag-Leffler function E-alpha,beta(gamma,q)(z) [Shukla AK, Prajapati JC. On a generalization of Mittag-Leffler function and its properties. J Math Anal Appl. 2007; 336(2): 797-811.]. Further properties of the generalized hypergeometric function R-2(1)(a, b; c; t; z) [Virchenko N, Kalla SL, Al-Zamel A. Some results on a generalized hypergeometric function. Integral Transforms Spec Funct. 2001; 12(1): 89-100.], namely integral representation and differentiation formulae are also studied.
引用
收藏
页码:896 / 904
页数:9
相关论文
共 50 条
  • [1] A note on a sum associated with the generalized hypergeometric function
    Neher, Markus
    APPLIED MATHEMATICS AND COMPUTATION, 2007, 187 (02) : 1527 - 1534
  • [2] NOTE ON CERTAIN REDUCIBLE CASES OF GENERALIZED HYPERGEOMETRIC FUNCTION
    PANDA, R
    PROCEEDINGS OF THE KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN SERIES A-MATHEMATICAL SCIENCES, 1976, 79 (01): : 41 - 45
  • [3] NOTE ON CERTAIN REDUCIBLE CASES OF GENERALIZED HYPERGEOMETRIC FUNCTION - PRELIMINARY REPORT
    PANDA, R
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (04): : A456 - A457
  • [4] A Note on Wright-type Generalized q-hypergeometric Function
    Chaudhary, Kuldipkumar K.
    Rao, Snehal B.
    BULLETIN OF IRKUTSK STATE UNIVERSITY-SERIES MATHEMATICS, 2024, 48 : 80 - 94
  • [5] A NOTE ON GENERALIZED HYPERGEOMETRIC DIFFERENTIAL EQUATION
    LAVOIE, JL
    MONGEAU, G
    DUKE MATHEMATICAL JOURNAL, 1968, 35 (04) : 747 - &
  • [6] ON THE GENERALIZED GAUSS HYPERGEOMETRIC FUNCTION
    Virchenko, N. A.
    VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI, 2008, (01): : 154 - 156
  • [7] ON GENERALIZED DOUBLE HYPERGEOMETRIC FUNCTION
    PATHAN, MA
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES, 1969, 39 : 309 - &
  • [8] Extension of Pochhammer symbol, generalized hypergeometric function and τ-Gauss hypergeometric function
    Yadav, Komal Singh
    Sharan, Bhagwat
    Verma, Ashish
    ANALYSIS-INTERNATIONAL MATHEMATICAL JOURNAL OF ANALYSIS AND ITS APPLICATIONS, 2024,
  • [9] A NOTE ON THE ASYMPTOTIC EXPANSION OF GENERALIZED HYPERGEOMETRIC FUNCTIONS
    Volkmer, Hans
    Wood, John J.
    ANALYSIS AND APPLICATIONS, 2014, 12 (01) : 107 - 115
  • [10] A Note on Some Generalized Hypergeometric Reduction Formulas
    Gonzalez-Santander, Juan Luis
    Lasheras, Fernando Sanchez
    MATHEMATICS, 2023, 11 (16)