THE METHOD OF ANALYTIC CENTERS FOR GENERALIZED CONVEX QUADRATIC PROGRAMS

被引:0
|
作者
JARRE, F
机构
来源
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:T96 / T98
页数:3
相关论文
共 50 条
  • [21] A DECOMPOSITION PROCEDURE FOR CONVEX QUADRATIC PROGRAMS
    SHETTY, CM
    DAYA, MB
    NAVAL RESEARCH LOGISTICS, 1988, 35 (01) : 111 - 118
  • [22] Lifted Inference for Convex Quadratic Programs
    Mladenov, Martin
    Kleinhans, Leonard
    Kersting, Kristian
    THIRTY-FIRST AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 2350 - 2356
  • [23] Convex quadratic relaxations of nonconvex quadratically constrained quadratic programs
    Mitchell, John E.
    Pang, Jong-Shi
    Yu, Bin
    OPTIMIZATION METHODS & SOFTWARE, 2014, 29 (01): : 120 - 136
  • [24] An Efficient Algorithm for Solving Convex–Convex Quadratic Fractional Programs
    R. Yamamoto
    H. Konno
    Journal of Optimization Theory and Applications, 2007, 133 : 241 - 255
  • [25] A modified alternating direction method for convex quadratically constrained quadratic semidefinite programs
    Sun, Jie
    Zhang, Su
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2010, 207 (03) : 1210 - 1220
  • [26] STABILITY OF LINEARLY CONSTRAINED CONVEX QUADRATIC PROGRAMS
    BEST, MJ
    CHAKRAVARTI, N
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1990, 64 (01) : 43 - 53
  • [27] On convex quadratic programs with linear complementarity constraints
    Bai, Lijie
    Mitchell, John E.
    Pang, Jong-Shi
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2013, 54 (03) : 517 - 554
  • [28] On semidefinite descriptions for convex hulls of quadratic programs
    Wang, Alex L.
    Kilinc-Karzan, Fatma
    OPERATIONS RESEARCH LETTERS, 2024, 54
  • [30] On convex quadratic programs with linear complementarity constraints
    Lijie Bai
    John E. Mitchell
    Jong-Shi Pang
    Computational Optimization and Applications, 2013, 54 : 517 - 554