A DECOMPOSITION PROCEDURE FOR CONVEX QUADRATIC PROGRAMS

被引:0
|
作者
SHETTY, CM
DAYA, MB
机构
关键词
D O I
暂无
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
引用
收藏
页码:111 / 118
页数:8
相关论文
共 50 条
  • [1] On some properties of quadratic programs with a convex quadratic constraint
    Lucidi, S
    Palagi, L
    Roma, M
    SIAM JOURNAL ON OPTIMIZATION, 1998, 8 (01) : 105 - 122
  • [2] Lifted Inference for Convex Quadratic Programs
    Mladenov, Martin
    Kleinhans, Leonard
    Kersting, Kristian
    THIRTY-FIRST AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 2350 - 2356
  • [3] Convex quadratic relaxations of nonconvex quadratically constrained quadratic programs
    Mitchell, John E.
    Pang, Jong-Shi
    Yu, Bin
    OPTIMIZATION METHODS & SOFTWARE, 2014, 29 (01): : 120 - 136
  • [4] An Efficient Algorithm for Solving Convex–Convex Quadratic Fractional Programs
    R. Yamamoto
    H. Konno
    Journal of Optimization Theory and Applications, 2007, 133 : 241 - 255
  • [5] STABILITY OF LINEARLY CONSTRAINED CONVEX QUADRATIC PROGRAMS
    BEST, MJ
    CHAKRAVARTI, N
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1990, 64 (01) : 43 - 53
  • [6] On convex quadratic programs with linear complementarity constraints
    Bai, Lijie
    Mitchell, John E.
    Pang, Jong-Shi
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2013, 54 (03) : 517 - 554
  • [7] On semidefinite descriptions for convex hulls of quadratic programs
    Wang, Alex L.
    Kilinc-Karzan, Fatma
    OPERATIONS RESEARCH LETTERS, 2024, 54
  • [9] On convex quadratic programs with linear complementarity constraints
    Lijie Bai
    John E. Mitchell
    Jong-Shi Pang
    Computational Optimization and Applications, 2013, 54 : 517 - 554
  • [10] Convex dual for quadratic concave fractional programs
    Scott, CH
    Jefferson, TR
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1996, 91 (01) : 115 - 122