A DECOMPOSITION PROCEDURE FOR CONVEX QUADRATIC PROGRAMS

被引:0
|
作者
SHETTY, CM
DAYA, MB
机构
关键词
D O I
暂无
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
引用
收藏
页码:111 / 118
页数:8
相关论文
共 50 条
  • [21] EFFICIENT PRIMAL ALGORITHMS FOR STRICTLY CONVEX QUADRATIC PROGRAMS
    GOLDFARB, D
    LECTURE NOTES IN MATHEMATICS, 1986, 1230 : 11 - 25
  • [22] A dual method for solving general convex quadratic programs
    LAMOS Laboratory, University of Bejaia, 06000 Bejaia, Algeria
    不详
    不详
    World Acad. Sci. Eng. Technol., 2009, (489-493):
  • [23] A new algorithm for solving strictly convex quadratic programs
    Li, W
    Swetits, J
    SIAM JOURNAL ON OPTIMIZATION, 1997, 7 (03) : 595 - 619
  • [24] Dual support method for solving convex quadratic programs
    Brahmi, Belkacem
    Bibi, Mohand Ouamer
    OPTIMIZATION, 2010, 59 (06) : 851 - 872
  • [25] Overlapping Schwarz Decomposition for Constrained Quadratic Programs
    Shin, Sungho
    Anitescu, Mihai
    Zavala, Victor M.
    2020 59TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2020, : 3004 - 3009
  • [26] Solving convex programs via Lagrangian decomposition
    Knobloch, M
    KYBERNETIKA, 2004, 40 (05) : 595 - 610
  • [27] A SURVEY ON OPERATOR SPLITTING AND DECOMPOSITION OF CONVEX PROGRAMS
    Lenoir, Arnaud
    Mahey, Philippe
    RAIRO-OPERATIONS RESEARCH, 2017, 51 (01) : 17 - 41
  • [28] Duality and optimality conditions for reverse convex programs via a convex decomposition
    Houda Keraoui
    Samir Fatajou
    Abdelmalek Aboussoror
    Rendiconti del Circolo Matematico di Palermo Series 2, 2023, 72 : 3917 - 3930
  • [29] Duality and optimality conditions for reverse convex programs via a convex decomposition
    Keraoui, Houda
    Fatajou, Samir
    Aboussoror, Abdelmalek
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2023, 72 (08) : 3917 - 3930
  • [30] Solution existence and stability of quadratically constrained convex quadratic programs
    D. S. Kim
    N. N. Tam
    N. D. Yen
    Optimization Letters, 2012, 6 : 363 - 373