A modified alternating direction method for convex quadratically constrained quadratic semidefinite programs

被引:55
|
作者
Sun, Jie [1 ,2 ]
Zhang, Su [1 ,3 ]
机构
[1] Natl Univ Singapore, Dept Decis Sci, Singapore 119245, Singapore
[2] Natl Univ Singapore, Risk Management Inst, Singapore 119245, Singapore
[3] Nankai Univ, Sch Business, Inst Modern Management, Tianjin, Peoples R China
关键词
Alternating direction method; Conic programming; Quadratic semidefinite optimization; NEWTON METHOD; MATRIX; ALGORITHM;
D O I
10.1016/j.ejor.2010.07.020
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
We propose a modified alternating direction method for solving convex quadratically constrained quadratic semidefinite optimization problems. The method is a first-order method, therefore requires much less computational effort per iteration than the second-order approaches such as the interior point methods or the smoothing Newton methods. In fact, only a single inexact metric projection onto the positive semidefinite cone is required at each iteration. We prove global convergence and provide numerical evidence to show the effectiveness of this method. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:1210 / 1220
页数:11
相关论文
共 50 条
  • [1] Modified alternating direction method of multipliers for convex quadratic semidefinite programming
    Chang, Xiaokai
    Liu, Sanyang
    Li, Xu
    NEUROCOMPUTING, 2016, 214 : 575 - 586
  • [2] A Newton-CG Augmented Lagrangian Method for Convex Quadratically Constrained Quadratic Semidefinite Programs
    Zhao, Xin-Yuan
    Cai, Tao
    Xu, Dachuan
    ADVANCES IN GLOBAL OPTIMIZATION, 2015, 95 : 337 - 345
  • [3] A METHOD OF ANALYTIC CENTERS FOR QUADRATICALLY CONSTRAINED CONVEX QUADRATIC PROGRAMS
    MEHROTRA, S
    SUN, J
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1991, 28 (02) : 529 - 544
  • [4] Acyclic Semidefinite Approximations of Quadratically Constrained Quadratic Programs
    Louca, Raphael
    Bitar, Eilyan
    2015 AMERICAN CONTROL CONFERENCE (ACC), 2015, : 5925 - 5930
  • [5] Convex quadratic relaxations of nonconvex quadratically constrained quadratic programs
    Mitchell, John E.
    Pang, Jong-Shi
    Yu, Bin
    OPTIMIZATION METHODS & SOFTWARE, 2014, 29 (01): : 120 - 136
  • [6] SEMIDEFINITE APPROXIMATION FOR MIXED BINARY QUADRATICALLY CONSTRAINED QUADRATIC PROGRAMS
    Xu, Zi
    Hong, Mingyi
    Luo, Zhi-Quan
    SIAM JOURNAL ON OPTIMIZATION, 2014, 24 (03) : 1265 - 1293
  • [7] Solution existence and stability of quadratically constrained convex quadratic programs
    D. S. Kim
    N. N. Tam
    N. D. Yen
    Optimization Letters, 2012, 6 : 363 - 373
  • [8] Positive semidefinite penalty method for quadratically constrained quadratic programming
    Gu, Ran
    Du, Qiang
    Yuan, Ya-xiang
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2021, 41 (04) : 2488 - 2515
  • [9] AN ALGORITHMS TO DETERMINE BOUNDEDNESS OF QUADRATICALLY CONSTRAINED CONVEX QUADRATIC PROGRAMS
    CARON, RJ
    OBUCHOWSKA, WT
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1995, 80 (02) : 431 - 438
  • [10] Solution existence and stability of quadratically constrained convex quadratic programs
    Kim, D. S.
    Tam, N. N.
    Yen, N. D.
    OPTIMIZATION LETTERS, 2012, 6 (02) : 363 - 373