On generating function for D-k-sequences in Pascal's triangle

被引:2
|
作者
Nanhongkai, Suriya [1 ]
Leerawat, Utsanee [1 ]
机构
[1] Kasetsart Univ, Fac Sci, Dept Math, Bangkok 10900, Thailand
关键词
Pascal's triangle; Generating function; Exponential generating function;
D O I
10.1080/09720529.2018.1478628
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work establish dosed formulas of generating function and exponential generating function of the D-k-sequences {((n+k-1)(k-1))}(n-0)(infinity) for any positive integer k.
引用
收藏
页码:1529 / 1535
页数:7
相关论文
共 50 条
  • [1] On digital sequences associated with Pascal’s triangle
    Pierre Mathonet
    Michel Rigo
    Manon Stipulanti
    Naïm Zénaïdi
    [J]. Aequationes mathematicae, 2023, 97 : 391 - 423
  • [2] On digital sequences associated with Pascal's triangle
    Mathonet, Pierre
    Rigo, Michel
    Stipulanti, Manon
    Zenaidi, Naim
    [J]. AEQUATIONES MATHEMATICAE, 2023, 97 (02) : 391 - 423
  • [3] SEQUENCES, SERIES, AND PASCAL TRIANGLE
    JONES, LK
    [J]. TWO-YEAR COLLEGE MATHEMATICS JOURNAL, 1983, 14 (03): : 253 - 256
  • [4] Generating ideals in commutative Artinian group rings and a generalized Pascal's triangle
    Okon, JS
    Rush, DE
    [J]. COMMUNICATIONS IN ALGEBRA, 2002, 30 (11) : 5595 - 5607
  • [5] The backbone of Pascal's triangle
    Baylis, John
    [J]. MATHEMATICAL GAZETTE, 2010, 94 (529): : 184 - 185
  • [6] Pascal's Triangle of Configurations
    Gevay, Gabor
    [J]. DISCRETE GEOMETRY AND SYMMETRY: DEDICATED TO KAROLY BEZDEK AND EGON SCHULTE ON THE OCCASION OF THEIR 60TH BIRTHDAYS, 2018, 234 : 181 - 199
  • [7] Extended Pascal's triangle
    Atanassov, Krassimir T.
    [J]. NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2016, 22 (01) : 55 - 58
  • [8] Generating binomial coefficients in a row of Pascal's triangle from extensions of powers of eleven
    Islam, Md. Shariful
    Islam, Md. Robiul
    Hossan, Md. Shorif
    Kibria, Md. Hasan
    [J]. HELIYON, 2022, 8 (11)
  • [9] Pascal's triangle (mod 9)
    Huard, JG
    Spearman, BK
    Williams, KS
    [J]. ACTA ARITHMETICA, 1997, 78 (04) : 331 - 349
  • [10] Pascal's triangle (mod 8)
    Huard, JG
    Spearman, BK
    Williams, KS
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 1998, 19 (01) : 45 - 62