NEW-TYPE OF GAP SOLITON IN A COUPLED KORTEWEG-DE VRIES WAVE SYSTEM

被引:42
|
作者
GRIMSHAW, R [1 ]
MADOMED, BA [1 ]
机构
[1] TEL AVIV UNIV,SCH MATH SCI,DEPT APPL MATH,IL-69978 RAMAT AVIV,ISRAEL
关键词
D O I
10.1103/PhysRevLett.72.949
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that, in a narrow gap in the spectrum of two linearly coupled Korteweg-de Vries equations with opposite signs of the dispersion coefficient, a two-parameter family of solitons of a novel type may exist. These are envelope solitons with decaying oscillating tails, which are radically different from the gap solitons previously known in nonlinear optics. In particular, they may become singular at some value of the velocity, and degenerate into algebraic solitons in another special case. It is demonstrated that gap solitons of the same type may also exist in a nonlinear optical system consisting of focusing and defocusing tunnel-coupled planar lightguides.
引用
收藏
页码:949 / 953
页数:5
相关论文
共 50 条
  • [1] GAP-SOLITON HUNT IN A COUPLED KORTEWEG-DE VRIES SYSTEM
    GRIMSHAW, R
    MALOMED, BA
    TIAN, X
    PHYSICS LETTERS A, 1995, 201 (04) : 285 - 292
  • [2] New periodic wave and soliton solutions for system of coupled Korteweg-de Vries equations
    Rady, A. S. Abdel
    Khater, A. H.
    Osman, E. S.
    Khalfallah, Mohammed
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 207 (02) : 406 - 414
  • [3] Multi soliton solution for the system of Coupled Korteweg-de Vries equations
    Rady, A. S. Abdel
    Osman, E. S.
    Khalfallah, Mohammed
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 210 (01) : 177 - 181
  • [4] New Positon, Negaton, and Complexiton Solutions for a Coupled Korteweg-de Vries - Modified Korteweg-de Vries System
    Hu, Hengchun
    Yang, Mingyuan
    Zhang, Ling
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2012, 67 (6-7): : 347 - 354
  • [5] Matrix Korteweg-de Vries and modified Korteweg-de Vries hierarchies: Noncommutative soliton solutions
    Carillo, Sandra
    Schiebold, Cornelia
    JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (05)
  • [6] On solitary-wave solutions for the coupled Korteweg-de Vries and modified Korteweg-de Vries equations and their dynamics
    Hong, WP
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2006, 61 (3-4): : 125 - 132
  • [7] Soliton solution and interaction property for a coupled modified Korteweg-de Vries (mKdV) system
    Yang Jian-Rong
    Mao Jie-Jian
    CHINESE PHYSICS B, 2008, 17 (12) : 4337 - 4343
  • [8] Induced gap solitons of a Korteweg-de Vries system
    Zhou, LQ
    He, KF
    Huang, ZQ
    PHYSICAL REVIEW E, 1998, 58 (06): : 7974 - 7977
  • [9] Soliton states of n-coupled Korteweg-de Vries equations
    Triki, H
    El Akrmi, A
    Rabia, MK
    OPTICS COMMUNICATIONS, 2004, 232 (1-6) : 429 - 437
  • [10] Soliton solution and interaction property for a coupled modified Korteweg-de Vries (mKdV) system
    杨建荣
    毛杰健
    Chinese Physics B, 2008, (12) : 4337 - 4343