NEW-TYPE OF GAP SOLITON IN A COUPLED KORTEWEG-DE VRIES WAVE SYSTEM

被引:42
|
作者
GRIMSHAW, R [1 ]
MADOMED, BA [1 ]
机构
[1] TEL AVIV UNIV,SCH MATH SCI,DEPT APPL MATH,IL-69978 RAMAT AVIV,ISRAEL
关键词
D O I
10.1103/PhysRevLett.72.949
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that, in a narrow gap in the spectrum of two linearly coupled Korteweg-de Vries equations with opposite signs of the dispersion coefficient, a two-parameter family of solitons of a novel type may exist. These are envelope solitons with decaying oscillating tails, which are radically different from the gap solitons previously known in nonlinear optics. In particular, they may become singular at some value of the velocity, and degenerate into algebraic solitons in another special case. It is demonstrated that gap solitons of the same type may also exist in a nonlinear optical system consisting of focusing and defocusing tunnel-coupled planar lightguides.
引用
收藏
页码:949 / 953
页数:5
相关论文
共 50 条
  • [11] Soliton solutions in three linearly coupled Korteweg-de Vries equations
    Triki, H
    El Akrmi, A
    Rabia, MK
    OPTICS COMMUNICATIONS, 2002, 201 (4-6) : 447 - 455
  • [12] Reductions to Korteweg-de Vries Soliton Hierarchy
    CHEN Jin-Bing~(1
    CommunicationsinTheoreticalPhysics, 2006, 45 (02) : 231 - 235
  • [13] Bosonization and new interaction solutions for the coupled Korteweg-de Vries system
    Cao, Weiping
    Fei, Jinxi
    Ma, Zhengyi
    Liu, Qing
    WAVES IN RANDOM AND COMPLEX MEDIA, 2020, 30 (01) : 130 - 141
  • [14] Supersymmetric extension of a coupled Korteweg-de Vries system
    Sotomayor, Adrian
    Restuccia, Alvaro
    3RD INTERNATIONAL CONFERENCE ON MATHEMATICAL MODELING IN PHYSICAL SCIENCES (IC-MSQUARE 2014), 2015, 574
  • [15] Gauge symmetries for a coupled Korteweg-de Vries system
    Restuccia, Alvaro
    Sotomayor, Adrian
    6TH INTERNATIONAL CONFERENCE ON MATHEMATICAL MODELLING IN PHYSICAL SCIENCES (IC-MSQUARE 2017), 2017, 936
  • [16] On exact solutions of a coupled Korteweg-de Vries system
    Yang, Xu-Dong
    Ruan, Hang-Yu
    Lou, Sen Yue
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2007, 62 (7-8): : 353 - 367
  • [17] Exact Solutions for a Coupled Korteweg-de Vries System
    Zuo, Da-Wei
    Jia, Hui-Xian
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2016, 71 (11): : 1053 - 1058
  • [18] ANNIHILATION AND CREATION OF A KORTEWEG-DE VRIES SOLITON
    AU, C
    FUNG, PCW
    PHYSICAL REVIEW B, 1984, 30 (04) : 1797 - 1800
  • [19] Soliton fractals in the Korteweg-de Vries equation
    Zamora-Sillero, Elias
    Shapovalov, A. V.
    PHYSICAL REVIEW E, 2007, 76 (04):
  • [20] Numerical integration of a coupled Korteweg-de Vries system
    Halim, AA
    Kshevetskii, SP
    Leble, SB
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2003, 45 (4-5) : 581 - 591