NEW-TYPE OF GAP SOLITON IN A COUPLED KORTEWEG-DE VRIES WAVE SYSTEM

被引:42
|
作者
GRIMSHAW, R [1 ]
MADOMED, BA [1 ]
机构
[1] TEL AVIV UNIV,SCH MATH SCI,DEPT APPL MATH,IL-69978 RAMAT AVIV,ISRAEL
关键词
D O I
10.1103/PhysRevLett.72.949
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that, in a narrow gap in the spectrum of two linearly coupled Korteweg-de Vries equations with opposite signs of the dispersion coefficient, a two-parameter family of solitons of a novel type may exist. These are envelope solitons with decaying oscillating tails, which are radically different from the gap solitons previously known in nonlinear optics. In particular, they may become singular at some value of the velocity, and degenerate into algebraic solitons in another special case. It is demonstrated that gap solitons of the same type may also exist in a nonlinear optical system consisting of focusing and defocusing tunnel-coupled planar lightguides.
引用
收藏
页码:949 / 953
页数:5
相关论文
共 50 条
  • [21] Solitary waves of a coupled Korteweg-de Vries system
    Grimshaw, R
    Iooss, G
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2003, 62 (1-2) : 31 - 40
  • [22] Reductions to Korteweg-de Vries soliton hierarchy
    Chen, JB
    Tan, RM
    Geng, XG
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2006, 45 (02) : 231 - 235
  • [23] Travelling solitary wave solutions for the nonlinear coupled Korteweg-de Vries system
    Zayed, E. M. E.
    Abourabia, A. M.
    Gepreel, Khaled A.
    El Horbaty, M. M.
    CHAOS SOLITONS & FRACTALS, 2007, 34 (02) : 292 - 306
  • [24] Travelling Wave Solutions of a Coupled Korteweg-de Vries-Burgers System
    Motsepa, Tanki
    Khalique, ChaudryMasood
    PROGRESS IN APPLIED MATHEMATICS IN SCIENCE AND ENGINEERING PROCEEDINGS, 2016, 1705
  • [25] NEW TYPES OF SOLITON-LIKE SOLUTIONS FOR A SECOND ORDER WAVE EQUATION OF KORTEWEG-DE VRIES TYPE
    Triki, H.
    Ak, T.
    Biswas, A.
    APPLIED AND COMPUTATIONAL MATHEMATICS, 2017, 16 (02) : 168 - 176
  • [26] Coupled system of Korteweg-de Vries equations type in domains with moving boundaries
    Bisognin, Eleni
    Bisognin, Vanilde
    Sepulveda, Mauricio
    Vera, Octavio
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 220 (1-2) : 290 - 321
  • [27] Steady gap solitons in a coupled Korteweg-de Vries system: A dynamical systems approach
    Grimshaw, Roger
    Christodouhdes, Paul
    PHYSICA D-NONLINEAR PHENOMENA, 2010, 239 (10) : 635 - 639
  • [28] Soliton-like solutions of higher order wave equations of the Korteweg-de Vries type
    Tzirtzilakis, E
    Marinakis, V
    Apokis, C
    Bountis, T
    JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (12) : 6151 - 6165
  • [29] Dynamic soliton solutions for the modified complex Korteweg-de Vries system
    Ibrahim, Ibrahim Sani
    Sabi'u, Jamilu
    Gambo, Yusuf Ya'u
    Rezapour, Shahram
    Inc, Mustafa
    OPTICAL AND QUANTUM ELECTRONICS, 2024, 56 (06)
  • [30] Multiple Soliton Solutions for a Variety of Coupled Modified Korteweg-de Vries Equations
    Wazwaz, Abdul-Majid
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2011, 66 (10-11): : 625 - 631