Soliton states of n-coupled Korteweg-de Vries equations

被引:3
|
作者
Triki, H [1 ]
El Akrmi, A [1 ]
Rabia, MK [1 ]
机构
[1] Badji Mokhtar Univ, Fac Sci, Radiat Phys Lab, Dept Phys, Annaba 23000, Algeria
关键词
D O I
10.1016/j.optcom.2003.12.069
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The dynamics of soliton states propagation is studied in weakly nonlinear, weakly dispersive waves. The generic model of this situation consists of n-coupled Korteweg-de Vries equations. This asymptotic system contains a very rich solution set of solitary waves that propagate in these arrays of KdV subsystems. An analytic expression that determine the exact location of the points where asymmetric solutions bifurcate from the symmetric solution, which possesses identical forms and amplitudes in all the arrays, is obtained. Energy-dispersion diagram is constructed for a particular case of three-coupled KdV system. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:429 / 437
页数:9
相关论文
共 50 条
  • [1] Bound States of Dark Solitons in N-Coupled Complex Modified Korteweg-de Vries Equations
    Ye, Rusuo
    Zhang, Yi
    Ma, Wen-Xiu
    ACTA APPLICANDAE MATHEMATICAE, 2022, 178 (01)
  • [2] Soliton solutions in three linearly coupled Korteweg-de Vries equations
    Triki, H
    El Akrmi, A
    Rabia, MK
    OPTICS COMMUNICATIONS, 2002, 201 (4-6) : 447 - 455
  • [3] Multi soliton solution for the system of Coupled Korteweg-de Vries equations
    Rady, A. S. Abdel
    Osman, E. S.
    Khalfallah, Mohammed
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 210 (01) : 177 - 181
  • [4] The coupled modified Korteweg-de Vries equations
    Tsuchida, T
    Wadati, M
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1998, 67 (04) : 1175 - 1187
  • [5] Multiple Soliton Solutions for a Variety of Coupled Modified Korteweg-de Vries Equations
    Wazwaz, Abdul-Majid
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2011, 66 (10-11): : 625 - 631
  • [6] The functional variable method for solving the fractional Korteweg-de Vries equations and the coupled Korteweg-de Vries equations
    Matinfar, M.
    Eslami, M.
    Kordy, M.
    PRAMANA-JOURNAL OF PHYSICS, 2015, 85 (04): : 583 - 592
  • [7] Soliton Solutions to Generalized Discrete Korteweg-de Vries Equations
    Popov, S. P.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2008, 48 (09) : 1658 - 1668
  • [8] Rational soliton solutions in the nonlocal coupled complex modified Korteweg-de Vries equations
    Li, Miao
    Zhang, Yi
    Ye, Rusuo
    Lou, Yu
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2023, 24 (06) : 2155 - 2162
  • [9] Soliton solutions to generalized discrete Korteweg-de Vries equations
    S. P. Popov
    Computational Mathematics and Mathematical Physics, 2008, 48 : 1658 - 1668
  • [10] New periodic wave and soliton solutions for system of coupled Korteweg-de Vries equations
    Rady, A. S. Abdel
    Khater, A. H.
    Osman, E. S.
    Khalfallah, Mohammed
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 207 (02) : 406 - 414