Soliton states of n-coupled Korteweg-de Vries equations

被引:3
|
作者
Triki, H [1 ]
El Akrmi, A [1 ]
Rabia, MK [1 ]
机构
[1] Badji Mokhtar Univ, Fac Sci, Radiat Phys Lab, Dept Phys, Annaba 23000, Algeria
关键词
D O I
10.1016/j.optcom.2003.12.069
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The dynamics of soliton states propagation is studied in weakly nonlinear, weakly dispersive waves. The generic model of this situation consists of n-coupled Korteweg-de Vries equations. This asymptotic system contains a very rich solution set of solitary waves that propagate in these arrays of KdV subsystems. An analytic expression that determine the exact location of the points where asymmetric solutions bifurcate from the symmetric solution, which possesses identical forms and amplitudes in all the arrays, is obtained. Energy-dispersion diagram is constructed for a particular case of three-coupled KdV system. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:429 / 437
页数:9
相关论文
共 50 条
  • [11] Canonical structure of the coupled Korteweg-de Vries equations
    Talukdar, B
    Ghosh, S
    Shamanna, J
    CANADIAN JOURNAL OF PHYSICS, 2004, 82 (06) : 459 - 466
  • [12] On solitary-wave solutions for the coupled Korteweg-de Vries and modified Korteweg-de Vries equations and their dynamics
    Hong, WP
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2006, 61 (3-4): : 125 - 132
  • [13] Matrix Korteweg-de Vries and modified Korteweg-de Vries hierarchies: Noncommutative soliton solutions
    Carillo, Sandra
    Schiebold, Cornelia
    JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (05)
  • [14] Equilibrium states of Burgers and Korteweg-de Vries equations
    Verma, Mahendra K.
    Chatterjee, Soumyadeep
    Sharma, Aryan
    Mohapatra, Ananya
    PHYSICAL REVIEW E, 2022, 105 (03)
  • [15] Numerical inverse scattering for the Korteweg-de Vries and modified Korteweg-de Vries equations
    Trogdon, Thomas
    Olver, Sheehan
    Deconinck, Bernard
    PHYSICA D-NONLINEAR PHENOMENA, 2012, 241 (11) : 1003 - 1025
  • [16] Integrability of reductions of the discrete Korteweg-de Vries and potential Korteweg-de Vries equations
    Hone, A. N. W.
    van der Kamp, P. H.
    Quispel, G. R. W.
    Tran, D. T.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2013, 469 (2154):
  • [17] Binary Darboux transformation and soliton solutions for the coupled complex modified Korteweg-de Vries equations
    Zhang, Yi
    Ye, Rusuo
    Ma, Wenxiu
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (02) : 613 - 627
  • [18] Reductions to Korteweg-de Vries Soliton Hierarchy
    CHEN Jin-Bing~(1
    CommunicationsinTheoreticalPhysics, 2006, 45 (02) : 231 - 235
  • [19] GAP-SOLITON HUNT IN A COUPLED KORTEWEG-DE VRIES SYSTEM
    GRIMSHAW, R
    MALOMED, BA
    TIAN, X
    PHYSICS LETTERS A, 1995, 201 (04) : 285 - 292
  • [20] SOLITON SOLUTIONS AND HIGHER-ORDER KORTEWEG-DE VRIES EQUATIONS
    MORRIS, HC
    JOURNAL OF MATHEMATICAL PHYSICS, 1977, 18 (03) : 530 - 532