ON THE STABILITY OF FRAMES AND RIESZ BASES

被引:125
|
作者
FAVIER, SJ [1 ]
ZALIK, RA [1 ]
机构
[1] AUBURN UNIV, DEPT MATH, AUBURN, AL 36849 USA
关键词
D O I
10.1006/acha.1995.1012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The first part of this paper supplements the recent work of Heil and Christensen on the stability of frames in Banach and Hilbert spaces. After obtaining a multivariate version of Kadec's 1/4-theorem (which is used in the sequel), two of Christensen's results, Chui and Shi's Second Oversampling Theorem, and a variety of other results and techniques are applied to study the stability of multivariate exponential, wavelet, and Gabor frame and Riesz bases. Specific frame bounds and quantitative conditions of validity for mother wavelet and sampling perturbations are given. (C) 1995 Academic Press, Inc.
引用
收藏
页码:160 / 173
页数:14
相关论文
共 50 条
  • [41] Characterizations of (near) exact g-frames, g-Riesz bases, and Besselian g-frames
    Xiao, Xiangchun
    Zbu, Yucan
    Zhou, Guorong
    [J]. INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2019, 17 (05)
  • [42] g-ORTHONORMAL BASES, g-RIESZ BASES AND g-DUAL OF g-FRAMES
    Ramezani, Sayyed Mehrab
    Nazari, Akbar
    [J]. UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2016, 78 (01): : 91 - 98
  • [43] FRAMES AND RIESZ BASES FOR BANACH SPACES, AND BANACH SPACES OF VECTOR-VALUED SEQUENCES
    Cho, Kyugeun
    Kim, Ju Myung
    Lee, Han Ju
    [J]. BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2013, 7 (02): : 172 - 193
  • [44] The Characterization and Stability of g-Riesz Frames for Super Hilbert Space
    Hua, Dingli
    Huang, Yongdong
    [J]. JOURNAL OF FUNCTION SPACES, 2015, 2015
  • [45] Stability of bases and frames of reproducing kernels in model spaces
    Baranov, A
    [J]. ANNALES DE L INSTITUT FOURIER, 2005, 55 (07) : 2399 - +
  • [46] Modular Riesz bases versus Riesz bases in Hilbert C*-modules
    Hasannasab, Marzieh
    [J]. ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2021, 14 (01)
  • [47] Riesz multiwavelet bases
    Han, B
    Kwon, SG
    Park, SS
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2006, 20 (02) : 161 - 183
  • [48] Riesz bases by replacement
    De Carli, Laura
    Edward, Julian
    [J]. SAMPLING THEORY SIGNAL PROCESSING AND DATA ANALYSIS, 2022, 20 (02):
  • [49] Combining Riesz bases
    Kozma, Gady
    Nitzan, Shahaf
    [J]. INVENTIONES MATHEMATICAE, 2015, 199 (01) : 267 - 285
  • [50] Combining Riesz bases
    Gady Kozma
    Shahaf Nitzan
    [J]. Inventiones mathematicae, 2015, 199 : 267 - 285