ON THE STABILITY OF FRAMES AND RIESZ BASES

被引:125
|
作者
FAVIER, SJ [1 ]
ZALIK, RA [1 ]
机构
[1] AUBURN UNIV, DEPT MATH, AUBURN, AL 36849 USA
关键词
D O I
10.1006/acha.1995.1012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The first part of this paper supplements the recent work of Heil and Christensen on the stability of frames in Banach and Hilbert spaces. After obtaining a multivariate version of Kadec's 1/4-theorem (which is used in the sequel), two of Christensen's results, Chui and Shi's Second Oversampling Theorem, and a variety of other results and techniques are applied to study the stability of multivariate exponential, wavelet, and Gabor frame and Riesz bases. Specific frame bounds and quantitative conditions of validity for mother wavelet and sampling perturbations are given. (C) 1995 Academic Press, Inc.
引用
收藏
页码:160 / 173
页数:14
相关论文
共 50 条
  • [21] On Hilbert-Schmidt Frames for Operators and Riesz Bases
    Jyoti
    Vashisht, Lalit Kumar
    [J]. JOURNAL OF MATHEMATICAL PHYSICS ANALYSIS GEOMETRY, 2023, 19 (04) : 799 - 821
  • [22] Dual Wavelet Frames and Riesz Bases in Sobolev Spaces
    Han, Bin
    Shen, Zuowei
    [J]. CONSTRUCTIVE APPROXIMATION, 2009, 29 (03) : 369 - 406
  • [23] Approximately Hadamard Matrices and Riesz Bases in Random Frames
    Dong, Xiaoyu
    Rudelson, Mark
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2024, 2024 (03) : 2044 - 2065
  • [24] Riesz bases and their dual modular frames in Hilbert C*-modules
    Han, Deguang
    Jing, Wu
    Larson, David
    Mohapatra, Ram N.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 343 (01) : 246 - 256
  • [25] WEIGHTED RIESZ BASES IN G-FUSION FRAMES AND THEIR PERTURBATION
    Rahimlou, Gh
    Sadri, V
    Ahmadi, R.
    [J]. PROBLEMY ANALIZA-ISSUES OF ANALYSIS, 2020, 9 (01): : 110 - 127
  • [26] BESSELIAN G-FRAMES AND NEAR G-RIESZ BASES
    Abdollahpour, M. R.
    Najati, A.
    [J]. APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2011, 5 (02) : 259 - 270
  • [27] On the Riesz bases, frames and minimal exponential systems in L2 [- π, π]
    Nakamura, Akihiro
    [J]. HOKKAIDO MATHEMATICAL JOURNAL, 2011, 40 (01) : 89 - 102
  • [28] New characterizations of g-frames and g-Riesz bases
    Li, Dongwei
    Leng, Jinsong
    Huang, Tingzhu
    [J]. INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2018, 16 (06)
  • [29] g-FRAMES AND MODULAR RIESZ BASES IN HILBERT C*-MODULES
    Khosravi, Amir
    Khosravi, Behrooz
    [J]. INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2012, 10 (02)
  • [30] Frames and Riesz bases for shift invariant spaces on the abstract Heisenberg group
    Arati, S.
    Radha, R.
    [J]. INDAGATIONES MATHEMATICAE-NEW SERIES, 2019, 30 (01): : 106 - 127